Abstract:Tourism Recommender Systems (TRS) have traditionally focused on providing personalized travel suggestions, often prioritizing user preferences without considering broader sustainability goals. Integrating sustainability into TRS has become essential with the increasing need to balance environmental impact, local community interests, and visitor satisfaction. This paper proposes a novel approach to enhancing TRS for sustainable city trips using Large Language Models (LLMs) and a modified Retrieval-Augmented Generation (RAG) pipeline. We enhance the traditional RAG system by incorporating a sustainability metric based on a city's popularity and seasonal demand during the prompt augmentation phase. This modification, called Sustainability Augmented Reranking (SAR), ensures the system's recommendations align with sustainability goals. Evaluations using popular open-source LLMs, such as Llama-3.1-Instruct-8B and Mistral-Instruct-7B, demonstrate that the SAR-enhanced approach consistently matches or outperforms the baseline (without SAR) across most metrics, highlighting the benefits of incorporating sustainability into TRS.
Abstract:This paper uses topic modeling and bias measurement techniques to analyze and determine gender bias in English song lyrics. We utilize BERTopic to cluster 537,553 English songs into distinct topics and chart their development over time. Our analysis shows the thematic shift in song lyrics over the years, from themes of romance to the increasing sexualization of women in songs. We observe large amounts of profanity and misogynistic lyrics on various topics, especially in the overall biggest cluster. Furthermore, to analyze gender bias across topics and genres, we employ the Single Category Word Embedding Association Test (SC-WEAT) to compute bias scores for the word embeddings trained on the most popular topics as well as for each genre. We find that words related to intelligence and strength tend to show a male bias across genres, as opposed to appearance and weakness words, which are more female-biased; however, a closer look also reveals differences in biases across topics.