Abstract:We present experiments on diacritic restoration, a form of text normalization essential for natural language processing (NLP) tasks. Our study focuses on two extremely under-resourced languages: Bribri, a Chibchan language spoken in Costa Rica, and Cook Islands Māori, a Polynesian language spoken in the Cook Islands. Specifically, this paper: (i) compares algorithms for diacritics restoration in under-resourced languages, including tonal diacritics, (ii) examines the amount of data required to achieve target performance levels, (iii) contrasts results across varying resource conditions, and (iv) explores the related task of diacritic correction. We find that fine-tuned, character-level LLMs perform best, likely due to their ability to decompose complex characters into their UTF-8 byte representations. In contrast, massively multilingual models perform less effectively given our data constraints. Across all models, reliable performance begins to emerge with data budgets of around 10,000 words. Zero-shot approaches perform poorly in all cases. This study responds both to requests from the language communities and to broader NLP research questions concerning model performance and generalization in under-resourced contexts.
Abstract:Large multilingual models have inspired a new class of word alignment methods, which work well for the model's pretraining languages. However, the languages most in need of automatic alignment are low-resource and, thus, not typically included in the pretraining data. In this work, we ask: How do modern aligners perform on unseen languages, and are they better than traditional methods? We contribute gold-standard alignments for Bribri--Spanish, Guarani--Spanish, Quechua--Spanish, and Shipibo-Konibo--Spanish. With these, we evaluate state-of-the-art aligners with and without model adaptation to the target language. Finally, we also evaluate the resulting alignments extrinsically through two downstream tasks: named entity recognition and part-of-speech tagging. We find that although transformer-based methods generally outperform traditional models, the two classes of approach remain competitive with each other.