Abstract:Last-layer retraining methods have emerged as an efficient framework for correcting existing base models. Within this framework, several methods have been proposed to deal with correcting models for subgroup fairness with and without group membership information. Importantly, prior work has demonstrated that many methods are susceptible to noisy labels. To this end, we propose a drop-in correction for label noise in last-layer retraining, and demonstrate that it achieves state-of-the-art worst-group accuracy for a broad range of symmetric label noise and across a wide variety of datasets exhibiting spurious correlations. Our proposed approach uses label spreading on a latent nearest neighbors graph and has minimal computational overhead compared to existing methods.
Abstract:Existing methods for last layer retraining that aim to optimize worst-group accuracy (WGA) rely heavily on well-annotated groups in the training data. We show, both in theory and practice, that annotation-based data augmentations using either downsampling or upweighting for WGA are susceptible to domain annotation noise, and in high-noise regimes approach the WGA of a model trained with vanilla empirical risk minimization. We introduce Regularized Annotation of Domains (RAD) in order to train robust last layer classifiers without the need for explicit domain annotations. Our results show that RAD is competitive with other recently proposed domain annotation-free techniques. Most importantly, RAD outperforms state-of-the-art annotation-reliant methods even with only 5% noise in the training data for several publicly available datasets.