Abstract:This paper develops a Time Shift Governor (TSG)-based control scheme to enforce constraints during rendezvous and docking (RD) missions in the setting of the Two-Body problem. As an add-on scheme to the nominal closed-loop system, the TSG generates a time-shifted Chief spacecraft trajectory as a target reference for the Deputy spacecraft. This modification of the commanded reference trajectory ensures that constraints are enforced while the time shift is reduced to zero to effect the rendezvous. Our approach to TSG implementation integrates an LSTM neural network which approximates the time shift parameter as a function of a sequence of past Deputy and Chief spacecraft states. This LSTM neural network is trained offline from simulation data. We report simulation results for RD missions in the Low Earth Orbit (LEO) and on the Molniya orbit to demonstrate the effectiveness of the proposed control scheme. The proposed scheme reduces the time to compute the time shift parameter in most of the scenarios and successfully completes rendezvous missions.
Abstract:Control Barrier Functions (CBFs) have become powerful tools for ensuring safety in nonlinear systems. However, finding valid CBFs that guarantee persistent safety and feasibility remains an open challenge, especially in systems with input constraints. Traditional approaches often rely on manually tuning the parameters of the class K functions of the CBF conditions a priori. The performance of CBF-based controllers is highly sensitive to these fixed parameters, potentially leading to overly conservative behavior or safety violations. To overcome these issues, this paper introduces a learning-based optimal control framework for online adaptation of Input Constrained CBF (ICCBF) parameters in discrete-time nonlinear systems. Our method employs a probabilistic ensemble neural network to predict the performance and risk metrics, as defined in this work, for candidate parameters, accounting for both epistemic and aleatoric uncertainties. We propose a two-step verification process using Jensen-Renyi Divergence and distributionally-robust Conditional Value at Risk to identify valid parameters. This enables dynamic refinement of ICCBF parameters based on current state and nearby environments, optimizing performance while ensuring safety within the verified parameter set. Experimental results demonstrate that our method outperforms both fixed-parameter and existing adaptive methods in robot navigation scenarios across safety and performance metrics.