Abstract:In financial applications, regulations or best practices often lead to specific requirements in machine learning relating to four key pillars: fairness, privacy, interpretability and greenhouse gas emissions. These all sit in the broader context of sustainability in AI, an emerging practical AI topic. However, although these pillars have been individually addressed by past literature, none of these works have considered all the pillars. There are inherent trade-offs between each of the pillars (for example, accuracy vs fairness or accuracy vs privacy), making it even more important to consider them together. This paper outlines a new framework for Sustainable Machine Learning and proposes FPIG, a general AI pipeline that allows for these critical topics to be considered simultaneously to learn the trade-offs between the pillars better. Based on the FPIG framework, we propose a meta-learning algorithm to estimate the four key pillars given a dataset summary, model architecture, and hyperparameters before model training. This algorithm allows users to select the optimal model architecture for a given dataset and a given set of user requirements on the pillars. We illustrate the trade-offs under the FPIG model on three classical datasets and demonstrate the meta-learning approach with an example of real-world datasets and models with different interpretability, showcasing how it can aid model selection.
Abstract:We describe the Customer LifeTime Value (CLTV) prediction system deployed at ASOS.com, a global online fashion retailer. CLTV prediction is an important problem in e-commerce where an accurate estimate of future value allows retailers to effectively allocate marketing spend, identify and nurture high value customers and mitigate exposure to losses. The system at ASOS provides daily estimates of the future value of every customer and is one of the cornerstones of the personalised shopping experience. The state of the art in this domain uses large numbers of handcrafted features and ensemble regressors to forecast value, predict churn and evaluate customer loyalty. Recently, domains including language, vision and speech have shown dramatic advances by replacing handcrafted features with features that are learned automatically from data. We detail the system deployed at ASOS and show that learning feature representations is a promising extension to the state of the art in CLTV modelling. We propose a novel way to generate embeddings of customers, which addresses the issue of the ever changing product catalogue and obtain a significant improvement over an exhaustive set of handcrafted features.