Abstract:Controllable Image Captioning is a recent sub-field in the multi-modal task of Image Captioning wherein constraints are placed on which regions in an image should be described in the generated natural language caption. This puts a stronger focus on producing more detailed descriptions, and opens the door for more end-user control over results. A vital component of the Controllable Image Captioning architecture is the mechanism that decides the timing of attending to each region through the advancement of a region pointer. In this paper, we propose a novel method for predicting the timing of region pointer advancement by treating the advancement step as a natural part of the language structure via a NEXT-token, motivated by a strong correlation to the sentence structure in the training data. We find that our timing agrees with the ground-truth timing in the Flickr30k Entities test data with a precision of 86.55% and a recall of 97.92%. Our model implementing this technique improves the state-of-the-art on standard captioning metrics while additionally demonstrating a considerably larger effective vocabulary size.
Abstract:Image Captioning is a task that requires models to acquire a multi-modal understanding of the world and to express this understanding in natural language text. While the state-of-the-art for this task has rapidly improved in terms of n-gram metrics, these models tend to output the same generic captions for similar images. In this work, we address this limitation and train a model that generates more diverse and specific captions through an unsupervised training approach that incorporates a learning signal from an Image Retrieval model. We summarize previous results and improve the state-of-the-art on caption diversity and novelty. We make our source code publicly available online.
Abstract:Idioms pose problems to almost all Machine Translation systems. This type of language is very frequent in day-to-day language use and cannot be simply ignored. The recent interest in memory augmented models in the field of Language Modelling has aided the systems to achieve good results by bridging long-distance dependencies. In this paper we explore the use of such techniques into a Neural Machine Translation system to help in translation of idiomatic language.