Abstract:Fitness exercises are very beneficial to personal health and fitness; however, they can also be ineffective and potentially dangerous if performed incorrectly by the user. Exercise mistakes are made when the user does not use the proper form, or pose. In our work, we introduce Pose Trainer, an application that detects the user's exercise pose and provides personalized, detailed recommendations on how the user can improve their form. Pose Trainer uses the state of the art in pose estimation to detect a user's pose, then evaluates the vector geometry of the pose through an exercise to provide useful feedback. We record a dataset of over 100 exercise videos of correct and incorrect form, based on personal training guidelines, and build geometric-heuristic and machine learning algorithms for evaluation. Pose Trainer works on four common exercises and supports any Windows or Linux computer with a GPU.
Abstract:This paper presents ImagineNet, a tool that uses a novel neural style transfer model to enable end-users and app developers to restyle GUIs using an image of their choice. Former neural style transfer techniques are inadequate for this application because they produce GUIs that are illegible and hence nonfunctional. We propose a neural solution by adding a new loss term to the original formulation, which minimizes the squared error in the uncentered cross-covariance of features from different levels in a CNN between the style and output images. ImagineNet retains the details of GUIs, while transferring the colors and textures of the art. We presented GUIs restyled with ImagineNet as well as other style transfer techniques to 50 evaluators and all preferred those of ImagineNet. We show how ImagineNet can be used to restyle (1) the graphical assets of an app, (2) an app with user-supplied content, and (3) an app with dynamically generated GUIs.
Abstract:In this work, we build a series of machine learning models to predict the price of a product given its image, and visualize the features that result in higher or lower price predictions. We collect two novel datasets of product images and their MSRP prices for this purpose: a bicycle dataset and a car dataset. We set baselines for price regression using linear regression on histogram of oriented gradients (HOG) and convolutional neural network (CNN) features, and a baseline for price segment classification using a multiclass SVM. For our main models, we train several deep CNNs using both transfer learning and our own architectures, for both regression and classification. We achieve strong results on both datasets, with deep CNNs significantly outperforming other models in a variety of metrics. Finally, we use several recently-developed methods to visualize the image features that result in higher or lower prices.
Abstract:Employee theft and dishonesty is a major contributor to loss in the retail industry. Retailers have reported the need for more automated analytic tools to assess the liability of their employees. In this work, we train and optimize several machine learning models for regression prediction and analysis on this data, which will help retailers identify and manage risky employees. Since the data we use is very high dimensional, we use feature selection techniques to identify the most contributing factors to an employee's assessed risk. We also use dimension reduction and data embedding techniques to present this dataset in a easy to interpret format.