Abstract:Deep-learning-based surrogate models provide an efficient complement to numerical simulations for subsurface flow problems such as CO$_2$ geological storage. Accurately capturing the impact of faults on CO$_2$ plume migration remains a challenge for many existing deep learning surrogate models based on Convolutional Neural Networks (CNNs) or Neural Operators. We address this challenge with a graph-based neural model leveraging recent developments in the field of Graph Neural Networks (GNNs). Our model combines graph-based convolution Long-Short-Term-Memory (GConvLSTM) with a one-step GNN model, MeshGraphNet (MGN), to operate on complex unstructured meshes and limit temporal error accumulation. We demonstrate that our approach can accurately predict the temporal evolution of gas saturation and pore pressure in a synthetic reservoir with impermeable faults. Our results exhibit a better accuracy and a reduced temporal error accumulation compared to the standard MGN model. We also show the excellent generalizability of our algorithm to mesh configurations, boundary conditions, and heterogeneous permeability fields not included in the training set. This work highlights the potential of GNN-based methods to accurately and rapidly model subsurface flow with complex faults and fractures.
Abstract:The objective is to study the feasibility of predicting subsurface rock properties in wells from real-time drilling data. Geophysical logs, namely, density, porosity and sonic logs are of paramount importance for subsurface resource estimation and exploitation. These wireline petro-physical measurements are selectively deployed as they are expensive to acquire; meanwhile, drilling information is recorded in every drilled well. Hence a predictive tool for wireline log prediction from drilling data can help management make decisions about data acquisition, especially for delineation and production wells. This problem is non-linear with strong ineractions between drilling parameters; hence the potential for deep learning to address this problem is explored. We present a workflow for data augmentation and feature engineering using Distance-based Global Sensitivity Analysis. We propose an Inception-based Convolutional Neural Network combined with a Temporal Convolutional Network as the deep learning model. The model is designed to learn both low and high frequency content of the data. 12 wells from the Equinor dataset for the Volve field in the North Sea are used for learning. The model predictions not only capture trends but are also physically consistent across density, porosity, and sonic logs. On the test data, the mean square error reaches a low value of 0.04 but the correlation coefficient plateaus around 0.6. The model is able however to differentiate between different types of rocks such as cemented sandstone, unconsolidated sands, and shale.