Abstract:In the field of computational physics and material science, the efficient sampling of rare events occurring at atomic scale is crucial. It aids in understanding mechanisms behind a wide range of important phenomena, including protein folding, conformal changes, chemical reactions and materials diffusion and deformation. Traditional simulation methods, such as Molecular Dynamics and Monte Carlo, often prove inefficient in capturing the timescale of these rare events by brute force. In this paper, we introduce a practical approach by combining the idea of importance sampling with deep neural networks (DNNs) that enhance the sampling of these rare events. In particular, we approximate the variance-free bias potential function with DNNs which is trained to maximize the probability of rare event transition under the importance potential function. This method is easily scalable to high-dimensional problems and provides robust statistical guarantees on the accuracy of the estimated probability of rare event transition. Furthermore, our algorithm can actively generate and learn from any successful samples, which is a novel improvement over existing methods. Using a 2D system as a test bed, we provide comparisons between results obtained from different training strategies, traditional Monte Carlo sampling and numerically solved optimal bias potential function under different temperatures. Our numerical results demonstrate the efficacy of the DNN-based importance sampling of rare events.
Abstract:This study presents a Graph Neural Networks (GNNs)-based approach for predicting the effective elastic moduli of rocks from their digital CT-scan images. We use the Mapper algorithm to transform 3D digital rock images into graph datasets, encapsulating essential geometrical information. These graphs, after training, prove effective in predicting elastic moduli. Our GNN model shows robust predictive capabilities across various graph sizes derived from various subcube dimensions. Not only does it perform well on the test dataset, but it also maintains high prediction accuracy for unseen rocks and unexplored subcube sizes. Comparative analysis with Convolutional Neural Networks (CNNs) reveals the superior performance of GNNs in predicting unseen rock properties. Moreover, the graph representation of microstructures significantly reduces GPU memory requirements (compared to the grid representation for CNNs), enabling greater flexibility in the batch size selection. This work demonstrates the potential of GNN models in enhancing the prediction accuracy of rock properties and boosting the efficiency of digital rock analysis.
Abstract:Determining effective elastic properties of rocks from their pore-scale digital images is a key goal of digital rock physics (DRP). Direct numerical simulation (DNS) of elastic behavior, however, incurs high computational cost; and surrogate machine learning (ML) model, particularly convolutional neural network (CNN), show promises to accelerate homogenization process. 3D CNN models, however, are unable to handle large images due to memory issues. To address this challenge, we propose a novel method that combines 3D CNN with hierarchical homogenization method (HHM). The surrogate 3D CNN model homogenizes only small subimages, and a DNS is used to homogenize the intermediate image obtained by assembling small subimages. The 3D CNN model is designed to output the homogenized elastic constants within the Hashin-Shtrikman (HS) bounds of the input images. The 3D CNN model is first trained on data comprising equal proportions of five sandstone (quartz mineralogy) images, and, subsequently, fine-tuned for specific rocks using transfer learning. The proposed method is applied to homogenize the rock images of size 300x300x300 and 600x600x600 voxels, and the predicted homogenized elastic moduli are shown to agree with that obtained from the brute-force DNS. The transferability of the trained 3D CNN model (using transfer learning) is further demonstrated by predicting the homogenized elastic moduli of a limestone rock with calcite mineralogy. The surrogate 3D CNN model in combination with the HHM is thus shown to be a promising tool for the homogenization of large 3D digital rock images and other random media