Abstract:Deep learning (DL) models have emerged as a powerful tool in avian bioacoustics to diagnose environmental health and biodiversity. However, inconsistencies in research pose notable challenges hindering progress in this domain. Reliable DL models need to analyze bird calls flexibly across various species and environments to fully harness the potential of bioacoustics in a cost-effective passive acoustic monitoring scenario. Data fragmentation and opacity across studies complicate a comprehensive evaluation of general model performance. To overcome these challenges, we present the BirdSet benchmark, a unified framework consolidating research efforts with a holistic approach for classifying bird vocalizations in avian bioacoustics. BirdSet harmonizes open-source bird recordings into a curated dataset collection. This unified approach provides an in-depth understanding of model performance and identifies potential shortcomings across different tasks. By establishing baseline results of current models, BirdSet aims to facilitate comparability, guide subsequent data collection, and increase accessibility for newcomers to avian bioacoustics.
Abstract:We propose a shift towards end-to-end learning in bird sound monitoring by combining self-supervised (SSL) and deep active learning (DAL). Leveraging transformer models, we aim to bypass traditional spectrogram conversions, enabling direct raw audio processing. ActiveBird2Vec is set to generate high-quality bird sound representations through SSL, potentially accelerating the assessment of environmental changes and decision-making processes for wind farms. Additionally, we seek to utilize the wide variety of bird vocalizations through DAL, reducing the reliance on extensively labeled datasets by human experts. We plan to curate a comprehensive set of tasks through Huggingface Datasets, enhancing future comparability and reproducibility of bioacoustic research. A comparative analysis between various transformer models will be conducted to evaluate their proficiency in bird sound recognition tasks. We aim to accelerate the progression of avian bioacoustic research and contribute to more effective conservation strategies.