Abstract:$ $Large Language Models (LLMs) are being increasingly utilized in various applications, with code generations being a notable example. While previous research has shown that LLMs have the capability to generate both secure and insecure code, the literature does not take into account what factors help generate secure and effective code. Therefore in this paper we focus on identifying and understanding the conditions and contexts in which LLMs can be effectively and safely deployed in real-world scenarios to generate quality code. We conducted a comparative analysis of four advanced LLMs--GPT-3.5 and GPT-4 using ChatGPT and Bard and Gemini from Google--using 9 separate tasks to assess each model's code generation capabilities. We contextualized our study to represent the typical use cases of a real-life developer employing LLMs for everyday tasks as work. Additionally, we place an emphasis on security awareness which is represented through the use of two distinct versions of our developer persona. In total, we collected 61 code outputs and analyzed them across several aspects: functionality, security, performance, complexity, and reliability. These insights are crucial for understanding the models' capabilities and limitations, guiding future development and practical applications in the field of automated code generation.
Abstract:Electronic health records (EHRs) house crucial patient data in clinical notes. As these notes grow in volume and complexity, manual extraction becomes challenging. This work introduces a natural language interface using large language models (LLMs) for dynamic question-answering on clinical notes. Our chatbot, powered by Langchain and transformer-based LLMs, allows users to query in natural language, receiving relevant answers from clinical notes. Experiments, utilizing various embedding models and advanced LLMs, show Wizard Vicuna's superior accuracy, albeit with high compute demands. Model optimization, including weight quantization, improves latency by approximately 48 times. Promising results indicate potential, yet challenges such as model hallucinations and limited diverse medical case evaluations remain. Addressing these gaps is crucial for unlocking the value in clinical notes and advancing AI-driven clinical decision-making.