Abstract:$ $Large Language Models (LLMs) are being increasingly utilized in various applications, with code generations being a notable example. While previous research has shown that LLMs have the capability to generate both secure and insecure code, the literature does not take into account what factors help generate secure and effective code. Therefore in this paper we focus on identifying and understanding the conditions and contexts in which LLMs can be effectively and safely deployed in real-world scenarios to generate quality code. We conducted a comparative analysis of four advanced LLMs--GPT-3.5 and GPT-4 using ChatGPT and Bard and Gemini from Google--using 9 separate tasks to assess each model's code generation capabilities. We contextualized our study to represent the typical use cases of a real-life developer employing LLMs for everyday tasks as work. Additionally, we place an emphasis on security awareness which is represented through the use of two distinct versions of our developer persona. In total, we collected 61 code outputs and analyzed them across several aspects: functionality, security, performance, complexity, and reliability. These insights are crucial for understanding the models' capabilities and limitations, guiding future development and practical applications in the field of automated code generation.
Abstract:Remote sensing images present unique challenges to image analysis due to the extensive geographic coverage, hardware limitations, and misaligned multi-scale images. This paper revisits the classical multi-scale representation learning problem but under the general framework of self-supervised learning for remote sensing image understanding. We present Cross-Scale MAE, a self-supervised model built upon the Masked Auto-Encoder (MAE).During pre-training, Cross-Scale MAE employs scale augmentation techniques and enforces cross-scale consistency constraints through both contrastive and generative losses to ensure consistent and meaningful representations well-suited for a wide range of downstream tasks. Further, our implementation leverages the xFormers library to accelerate network pre-training on a single GPU while maintaining the quality of learned representations. Experimental evaluations demonstrate that Cross-Scale MAE exhibits superior performance compared to standard MAE and other state-of-the-art remote sensing MAE methods.