Abstract:Anomaly detection in manufacturing pipelines remains a critical challenge, intensified by the complexity and variability of industrial environments. This paper introduces AssemAI, an interpretable image-based anomaly detection system tailored for smart manufacturing pipelines. Our primary contributions include the creation of a tailored image dataset and the development of a custom object detection model, YOLO-FF, designed explicitly for anomaly detection in manufacturing assembly environments. Utilizing the preprocessed image dataset derived from an industry-focused rocket assembly pipeline, we address the challenge of imbalanced image data and demonstrate the importance of image-based methods in anomaly detection. The proposed approach leverages domain knowledge in data preparation, model development and reasoning. We compare our method against several baselines, including simple CNN and custom Visual Transformer (ViT) models, showcasing the effectiveness of our custom data preparation and pretrained CNN integration. Additionally, we incorporate explainability techniques at both user and model levels, utilizing ontology for user-friendly explanations and SCORE-CAM for in-depth feature and model analysis. Finally, the model was also deployed in a real-time setting. Our results include ablation studies on the baselines, providing a comprehensive evaluation of the proposed system. This work highlights the broader impact of advanced image-based anomaly detection in enhancing the reliability and efficiency of smart manufacturing processes.
Abstract:Rare events are occurrences that take place with a significantly lower frequency than more common regular events. In manufacturing, predicting such events is particularly important, as they lead to unplanned downtime, shortening equipment lifespan, and high energy consumption. The occurrence of events is considered frequently-rare if observed in more than 10% of all instances, very-rare if it is 1-5%, moderately-rare if it is 5-10%, and extremely-rare if less than 1%. The rarity of events is inversely correlated with the maturity of a manufacturing industry. Typically, the rarity of events affects the multivariate data generated within a manufacturing process to be highly imbalanced, which leads to bias in predictive models. This paper evaluates the role of data enrichment techniques combined with supervised machine-learning techniques for rare event detection and prediction. To address the data scarcity, we use time series data augmentation and sampling methods to amplify the dataset with more multivariate features and data points while preserving the underlying time series patterns in the combined alterations. Imputation techniques are used in handling null values in datasets. Considering 15 learning models ranging from statistical learning to machine learning to deep learning methods, the best-performing model for the selected datasets is obtained and the efficacy of data enrichment is evaluated. Based on this evaluation, our results find that the enrichment procedure enhances up to 48% of F1 measure in rare failure event detection and prediction of supervised prediction models. We also conduct empirical and ablation experiments on the datasets to derive dataset-specific novel insights. Finally, we investigate the interpretability aspect of models for rare event prediction, considering multiple methods.
Abstract:Two industry-grade datasets are presented in this paper that were collected at the Future Factories Lab at the University of South Carolina on December 11th and 12th of 2023. These datasets are generated by a manufacturing assembly line that utilizes industrial standards with respect to actuators, control mechanisms, and transducers. The two datasets were both generated simultaneously by operating the assembly line for 30 consecutive hours (with minor filtering) and collecting data from sensors equipped throughout the system. During operation, defects were also introduced into the assembly operation by manually removing parts needed for the final assembly. The datasets generated include a time series analog dataset and the other is a time series multi-modal dataset which includes images of the system alongside the analog data. These datasets were generated with the objective of providing tools to further the research towards enhancing intelligence in manufacturing. Real manufacturing datasets can be scarce let alone datasets with anomalies or defects. As such these datasets hope to address this gap and provide researchers with a foundation to build and train Artificial Intelligence models applicable for the manufacturing industry. Finally, these datasets are the first iteration of published data from the future Factories lab and can be further adjusted to fit more researchers needs moving forward.
Abstract:Manufacturing is gathering extensive amounts of diverse data, thanks to the growing number of sensors and rapid advances in sensing technologies. Among the various data types available in SMS settings, time-series data plays a pivotal role. Hence, TSC emerges is crucial in this domain. The objective of this study is to fill this gap by providing a rigorous experimental evaluation of the SoTA ML and DL algorithms for TSC tasks in manufacturing and industrial settings. We first explored and compiled a comprehensive list of more than 92 SoTA algorithms from both TSC and manufacturing literature. Following, we selected the 36 most representative algorithms from this list. To evaluate their performance across various manufacturing classification tasks, we curated a set of 22 manufacturing datasets, representative of different characteristics that cover diverse manufacturing problems. Subsequently, we implemented and evaluated the algorithms on the manufacturing benchmark datasets, and analyzed the results for each dataset. Based on the results, ResNet, DrCIF, InceptionTime, and ARSENAL are the top-performing algorithms, boasting an average accuracy of over 96.6% across all 22 manufacturing TSC datasets. These findings underscore the robustness, efficiency, scalability, and effectiveness of convolutional kernels in capturing temporal features in time-series data, as three out of the top four performing algorithms leverage these kernels for feature extraction. Additionally, LSTM, BiLSTM, and TS-LSTM algorithms deserve recognition for their effectiveness in capturing features within time-series data using RNN-based structures.
Abstract:Since the inception of Industry 4.0 in 2012, emerging technologies have enabled the acquisition of vast amounts of data from diverse sources such as machine tools, robust and affordable sensor systems with advanced information models, and other sources within Smart Manufacturing Systems (SMS). As a result, the amount of data that is available in manufacturing settings has exploded, allowing data-hungry tools such as Artificial Intelligence (AI) and Machine Learning (ML) to be leveraged. Time-series analytics has been successfully applied in a variety of industries, and that success is now being migrated to pattern recognition applications in manufacturing to support higher quality products, zero defect manufacturing, and improved customer satisfaction. However, the diverse landscape of manufacturing presents a challenge for successfully solving problems in industry using time-series pattern recognition. The resulting research gap of understanding and applying the subject matter of time-series pattern recognition in manufacturing is a major limiting factor for adoption in industry. The purpose of this paper is to provide a structured perspective of the current state of time-series pattern recognition in manufacturing with a problem-solving focus. By using an ontology to classify and define concepts, how they are structured, their properties, the relationships between them, and considerations when applying them, this paper aims to provide practical and actionable guidelines for application and recommendations for advancing time-series analytics.