Abstract:A promising strategy to protect quantum information from noise-induced errors is to encode it into the low-energy states of a topological quantum memory device. However, readout errors from such memory under realistic settings is less understood. We study the problem of decoding quantum information encoded in the groundspaces of topological stabilizer Hamiltonians in the presence of generic perturbations, such as quenched disorder. We first prove that the standard stabilizer-based error correction and decoding schemes work adequately well in such perturbed quantum codes by showing that the decoding error diminishes exponentially in the distance of the underlying unperturbed code. We then prove that Quantum Neural Network (QNN) decoders provide an almost quadratic improvement on the readout error. Thus, we demonstrate provable advantage of using QNNs for decoding realistic quantum error-correcting codes, and our result enables the exploration of a wider range of non-stabilizer codes in the near-term laboratory settings.
Abstract:The success of modern deep learning hinges on the ability to train neural networks at scale. Through clever reuse of intermediate information, backpropagation facilitates training through gradient computation at a total cost roughly proportional to running the function, rather than incurring an additional factor proportional to the number of parameters - which can now be in the trillions. Naively, one expects that quantum measurement collapse entirely rules out the reuse of quantum information as in backpropagation. But recent developments in shadow tomography, which assumes access to multiple copies of a quantum state, have challenged that notion. Here, we investigate whether parameterized quantum models can train as efficiently as classical neural networks. We show that achieving backpropagation scaling is impossible without access to multiple copies of a state. With this added ability, we introduce an algorithm with foundations in shadow tomography that matches backpropagation scaling in quantum resources while reducing classical auxiliary computational costs to open problems in shadow tomography. These results highlight the nuance of reusing quantum information for practical purposes and clarify the unique difficulties in training large quantum models, which could alter the course of quantum machine learning.