Abstract:3D scene graphs offer a more efficient representation of the environment by hierarchically organizing diverse semantic entities and the topological relationships among them. Fiducial markers, on the other hand, offer a valuable mechanism for encoding comprehensive information pertaining to environments and the objects within them. In the context of Visual SLAM (VSLAM), especially when the reconstructed maps are enriched with practical semantic information, these markers have the potential to enhance the map by augmenting valuable semantic information and fostering meaningful connections among the semantic objects. In this regard, this paper exploits the potential of fiducial markers to incorporate a VSLAM framework with hierarchical representations that generates optimizable multi-layered vision-based situational graphs. The framework comprises a conventional VSLAM system with low-level feature tracking and mapping capabilities bolstered by the incorporation of a fiducial marker map. The fiducial markers aid in identifying walls and doors in the environment, subsequently establishing meaningful associations with high-level entities, including corridors and rooms. Experimental results are conducted on a real-world dataset collected using various legged robots and benchmarked against a Light Detection And Ranging (LiDAR)-based framework (S-Graphs) as the ground truth. Consequently, our framework not only excels in crafting a richer, multi-layered hierarchical map of the environment but also shows enhancement in robot pose accuracy when contrasted with state-of-the-art methodologies.
Abstract:Fiducial markers can encode rich information about the environment and can aid Visual SLAM (VSLAM) approaches in reconstructing maps with practical semantic information. Current marker-based VSLAM approaches mainly utilize markers for improving feature detections in low-feature environments and/or for incorporating loop closure constraints, generating only low-level geometric maps of the environment prone to inaccuracies in complex environments. To bridge this gap, this paper presents a VSLAM approach utilizing a monocular camera along with fiducial markers to generate hierarchical representations of the environment while improving the camera pose estimate. The proposed approach detects semantic entities from the surroundings, including walls, corridors, and rooms encoded within markers, and appropriately adds topological constraints among them. Experimental results on a real-world dataset collected with a robot demonstrate that the proposed approach outperforms a traditional marker-based VSLAM baseline in terms of accuracy, given the addition of new constraints while creating enhanced map representations. Furthermore, it shows satisfactory results when comparing the reconstructed map quality to the one reconstructed using a LiDAR SLAM approach.