Abstract:In this work, we present HiReview, a novel framework for hierarchical taxonomy-driven automatic literature review generation. With the exponential growth of academic documents, manual literature reviews have become increasingly labor-intensive and time-consuming, while traditional summarization models struggle to generate comprehensive document reviews effectively. Large language models (LLMs), with their powerful text processing capabilities, offer a potential solution; however, research on incorporating LLMs for automatic document generation remains limited. To address key challenges in large-scale automatic literature review generation (LRG), we propose a two-stage taxonomy-then-generation approach that combines graph-based hierarchical clustering with retrieval-augmented LLMs. First, we retrieve the most relevant sub-community within the citation network, then generate a hierarchical taxonomy tree by clustering papers based on both textual content and citation relationships. In the second stage, an LLM generates coherent and contextually accurate summaries for clusters or topics at each hierarchical level, ensuring comprehensive coverage and logical organization of the literature. Extensive experiments demonstrate that HiReview significantly outperforms state-of-the-art methods, achieving superior hierarchical organization, content relevance, and factual accuracy in automatic literature review generation tasks.
Abstract:Deep generative models like VAEs and diffusion models have advanced various generation tasks by leveraging latent variables to learn data distributions and generate high-quality samples. Despite the field of explainable AI making strides in interpreting machine learning models, understanding latent variables in generative models remains challenging. This paper introduces LatentExplainer, a framework for automatically generating semantically meaningful explanations of latent variables in deep generative models. LatentExplainer tackles three main challenges: inferring the meaning of latent variables, aligning explanations with inductive biases, and handling varying degrees of explainability. By perturbing latent variables and interpreting changes in generated data, the framework provides a systematic approach to understanding and controlling the data generation process, enhancing the transparency and interpretability of deep generative models. We evaluate our proposed method on several real-world and synthetic datasets, and the results demonstrate superior performance in generating high-quality explanations of latent variables.