Abstract:Volumetric medical imaging offers great potential for understanding complex pathologies. Yet, traditional 2D slices provide little support for interpreting spatial relationships, forcing users to mentally reconstruct anatomy into three dimensions. Direct volumetric path tracing and VR rendering can improve perception but are computationally expensive, while precomputed representations, like Gaussian Splatting, require planning ahead. Both approaches limit interactive use. We propose a hybrid rendering approach for high-quality, interactive, and immersive anatomical visualization. Our method combines streamed foveated path tracing with a lightweight Gaussian Splatting approximation of the periphery. The peripheral model generation is optimized with volume data and continuously refined using foveal renderings, enabling interactive updates. Depth-guided reprojection further improves robustness to latency and allows users to balance fidelity with refresh rate. We compare our method against direct path tracing and Gaussian Splatting. Our results highlight how their combination can preserve strengths in visual quality while re-generating the peripheral model in under a second, eliminating extensive preprocessing and approximations. This opens new options for interactive medical visualization.
Abstract:Fine-tuning Large Language Models (LLMs) on sensitive datasets carries a substantial risk of unintended memorization and leakage of Personally Identifiable Information (PII), which can violate privacy regulations and compromise individual safety. In this work, we systematically investigate a critical and underexplored vulnerability: the exposure of PII that appears only in model inputs, not in training targets. Using both synthetic and real-world datasets, we design controlled extraction probes to quantify unintended PII memorization and study how factors such as language, PII frequency, task type, and model size influence memorization behavior. We further benchmark four privacy-preserving approaches including differential privacy, machine unlearning, regularization, and preference alignment, evaluating their trade-offs between privacy and task performance. Our results show that post-training methods generally provide more consistent privacy-utility trade-offs, while differential privacy achieves strong reduction in leakage in specific settings, although it can introduce training instability. These findings highlight the persistent challenge of memorization in fine-tuned LLMs and emphasize the need for robust, scalable privacy-preserving techniques.
Abstract:Employing pre-trained Large Language Models (LLMs) has become the de facto standard in Natural Language Processing (NLP) despite their extensive data requirements. Motivated by the recent surge in research focused on training LLMs with limited data, particularly in low-resource domains and languages, this paper surveys recent transfer learning approaches to optimize model performance in downstream tasks where data is scarce. We first address initial and continued pre-training strategies to better leverage prior knowledge in unseen domains and languages. We then examine how to maximize the utility of limited data during fine-tuning and few-shot learning. The final section takes a task-specific perspective, reviewing models and methods suited for different levels of data scarcity. Our goal is to provide practitioners with practical guidelines for overcoming the challenges posed by constrained data while also highlighting promising directions for future research.