Abstract:Medical image segmentation, a critical application of semantic segmentation in healthcare, has seen significant advancements through specialized computer vision techniques. While deep learning-based medical image segmentation is essential for assisting in medical diagnosis, the lack of diverse training data causes the long-tail problem. Moreover, most previous hybrid CNN-ViT architectures have limited ability to combine various attentions in different layers of the Convolutional Neural Network. To address these issues, we propose a Lagrange Duality Consistency (LDC) Loss, integrated with Boundary-Aware Contrastive Loss, as the overall training objective for semi-supervised learning to mitigate the long-tail problem. Additionally, we introduce CMAformer, a novel network that synergizes the strengths of ResUNet and Transformer. The cross-attention block in CMAformer effectively integrates spatial attention and channel attention for multi-scale feature fusion. Overall, our results indicate that CMAformer, combined with the feature fusion framework and the new consistency loss, demonstrates strong complementarity in semi-supervised learning ensembles. We achieve state-of-the-art results on multiple public medical image datasets. Example code are available at: \url{https://github.com/lzeeorno/Lagrange-Duality-and-CMAformer}.
Abstract:Graph representation learning has emerged as a powerful tool for preserving graph topology when mapping nodes to vector representations, enabling various downstream tasks such as node classification and community detection. However, most current graph neural network models face the challenge of requiring extensive labeled data, which limits their practical applicability in real-world scenarios where labeled data is scarce. To address this challenge, researchers have explored Graph Contrastive Learning (GCL), which leverages enhanced graph data and contrastive learning techniques. While promising, existing GCL methods often struggle with effectively capturing both local and global graph structures, and balancing the trade-off between nodelevel and graph-level representations. In this work, we propose Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning (GRE2-MDCL). Our model introduces a novel triple network architecture with a multi-head attention GNN as the core. GRE2-MDCL first globally and locally augments the input graph using SVD and LAGNN techniques. It then constructs a multidimensional contrastive loss, incorporating cross-network, cross-view, and neighbor contrast, to optimize the model. Extensive experiments on benchmark datasets Cora, Citeseer, and PubMed demonstrate that GRE2-MDCL achieves state-of-the-art performance, with average accuracies of 82.5%, 72.5%, and 81.6% respectively. Visualizations further show tighter intra-cluster aggregation and clearer inter-cluster boundaries, highlighting the effectiveness of our framework in improving upon baseline GCL models.