Abstract:This paper presents a diffusion-based recommender system that incorporates classifier-free guidance. Most current recommender systems provide recommendations using conventional methods such as collaborative or content-based filtering. Diffusion is a new approach to generative AI that improves on previous generative AI approaches such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). We incorporate diffusion in a recommender system that mirrors the sequence users take when browsing and rating items. Although a few current recommender systems incorporate diffusion, they do not incorporate classifier-free guidance, a new innovation in diffusion models as a whole. In this paper, we present a diffusion recommender system that augments the underlying recommender system model for improved performance and also incorporates classifier-free guidance. Our findings show improvements over state-of-the-art recommender systems for most metrics for several recommendation tasks on a variety of datasets. In particular, our approach demonstrates the potential to provide better recommendations when data is sparse.
Abstract:We introduce SetBERT, a fine-tuned BERT-based model designed to enhance query embeddings for set operations and Boolean logic queries, such as Intersection (AND), Difference (NOT), and Union (OR). SetBERT significantly improves retrieval performance for logic-structured queries, an area where both traditional and neural retrieval methods typically underperform. We propose an innovative use of inversed-contrastive loss, focusing on identifying the negative sentence, and fine-tuning BERT with a dataset generated via prompt GPT. Furthermore, we demonstrate that, unlike other BERT-based models, fine-tuning with triplet loss actually degrades performance for this specific task. Our experiments reveal that SetBERT-base not only significantly outperforms BERT-base (up to a 63% improvement in Recall) but also achieves performance comparable to the much larger BERT-large model, despite being only one-third the size.
Abstract:Online debates involve a dynamic exchange of ideas over time, where participants need to actively consider their opponents' arguments, respond with counterarguments, reinforce their own points, and introduce more compelling arguments as the discussion unfolds. Modeling such a complex process is not a simple task, as it necessitates the incorporation of both sequential characteristics and the capability to capture interactions effectively. To address this challenge, we employ a sequence-graph approach. Building the conversation as a graph allows us to effectively model interactions between participants through directed edges. Simultaneously, the propagation of information along these edges in a sequential manner enables us to capture a more comprehensive representation of context. We also introduce a Sequence Graph Attention layer to illustrate the proposed information update scheme. The experimental results show that sequence graph networks achieve superior results to existing methods in online debates.