Abstract:Stance Detection (SD) on social media has emerged as a prominent area of interest with implications for social business and political applications thereby garnering escalating research attention within NLP. The inherent subtlety and complexity of texts procured from online platforms pose challenges for SD algorithms in accurately discerning the authors stance. Mostly the inclusion of sarcastic and figurative language drastically impacts the performance of SD models. This paper addresses this by employing sarcasm detection intermediate-task transfer learning tailored for SD. The proposed methodology involves the finetuning of BERT and RoBERTa and the concatenation of convolutional BiLSTM and dense layers. Rigorous experiments are conducted on publicly available datasets to evaluate our transfer-learning framework. The performance of the approach is assessed against various State-Of-The-Art baselines for SD providing empirical evidence of its effectiveness. Notably our model outperforms the best SOTA models even prior to sarcasm-detection pretraining. The integration of sarcasm knowledge into the model proves instrumental in mitigating misclassifications of sarcastic textual elements in SD. Our model accurately predicts 85% of texts that were previously misclassified by the model without sarcasm-detection pretraining thereby amplifying the average F1-score of the model. Our experiments also revealed that the success of the transfer-learning framework is contingent upon the correlation of lexical attributes between the intermediate task and the target task. This study represents the first exploration of sarcasm detection as an intermediate transfer-learning task in the context of SD and simultaneously uses the concatenation of BERT or RoBERTa with other deep-learning techniques establishing the proposed approach as a foundational baseline for future research endeavors in this domain.
Abstract:Sentiment Analysis (SA) is instrumental in understanding peoples viewpoints facilitating social media monitoring recognizing products and brands and gauging customer satisfaction. Consequently SA has evolved into an active research domain within Natural Language Processing (NLP). Many approaches outlined in the literature devise intricate frameworks aimed at achieving high accuracy, focusing exclusively on either binary sentiment classification or fine-grained sentiment classification. In this paper our objective is to fine-tune the pre-trained BERT model with Bidirectional LSTM (BiLSTM) to enhance both binary and fine-grained SA specifically for movie reviews. Our approach involves conducting sentiment classification for each review followed by computing the overall sentiment polarity across all reviews. We present our findings on binary classification as well as fine-grained classification utilizing benchmark datasets. Additionally we implement and assess two accuracy improvement techniques Synthetic Minority Oversampling Technique (SMOTE) and NLP Augmenter (NLPAUG) to bolster the models generalization in fine-grained sentiment classification. Finally a heuristic algorithm is employed to calculate the overall polarity of predicted reviews from the BERT+BiLSTM output vector. Our approach performs comparably with state-of-the-art (SOTA) techniques in both classifications. For instance in binary classification we achieve 97.67% accuracy surpassing the leading SOTA model NB-weighted-BON+dv-cosine by 0.27% on the renowned IMDb dataset. Conversely for five-class classification on SST-5 while the top SOTA model RoBERTa+large+Self-explaining attains 55.5% accuracy our model achieves 59.48% accuracy surpassing the BERT-large baseline by 3.6%.
Abstract:Sentiment Analysis (SA) or opinion mining is analysis of emotions and opinions from any kind of text. SA helps in tracking peoples viewpoints and it is an important factor when it comes to social media monitoring product and brand recognition customer satisfaction customer loyalty advertising and promotions success and product acceptance. That is why SA is one of the active research areas in Natural Language Processing (NLP). SA is applied on data sourced from various media platforms to mine sentiment knowledge from them. Various approaches have been deployed in the literature to solve the problem. Most techniques devise complex and sophisticated frameworks in order to attain optimal accuracy. This work aims to finetune Bidirectional Encoder Representations from Transformers (BERT) with Bidirectional Long Short-Term Memory (BiLSTM) for movie reviews sentiment analysis and still provide better accuracy than the State-of-The-Art (SOTA) methods. The paper also shows how sentiment analysis can be applied if someone wants to recommend a certain movie for example by computing overall polarity of its sentiments predicted by the model. That is our proposed method serves as an upper-bound baseline in prediction of a predominant reaction to a movie. To compute overall polarity a heuristic algorithm is applied to BERTBiLSTM output vector. Our model can be extended to three-class four-class or any fine-grained classification and apply overall polarity computation again. This is intended to be exploited in future work.