Abstract:We introduce SetBERT, a fine-tuned BERT-based model designed to enhance query embeddings for set operations and Boolean logic queries, such as Intersection (AND), Difference (NOT), and Union (OR). SetBERT significantly improves retrieval performance for logic-structured queries, an area where both traditional and neural retrieval methods typically underperform. We propose an innovative use of inversed-contrastive loss, focusing on identifying the negative sentence, and fine-tuning BERT with a dataset generated via prompt GPT. Furthermore, we demonstrate that, unlike other BERT-based models, fine-tuning with triplet loss actually degrades performance for this specific task. Our experiments reveal that SetBERT-base not only significantly outperforms BERT-base (up to a 63% improvement in Recall) but also achieves performance comparable to the much larger BERT-large model, despite being only one-third the size.
Abstract:Online debates involve a dynamic exchange of ideas over time, where participants need to actively consider their opponents' arguments, respond with counterarguments, reinforce their own points, and introduce more compelling arguments as the discussion unfolds. Modeling such a complex process is not a simple task, as it necessitates the incorporation of both sequential characteristics and the capability to capture interactions effectively. To address this challenge, we employ a sequence-graph approach. Building the conversation as a graph allows us to effectively model interactions between participants through directed edges. Simultaneously, the propagation of information along these edges in a sequential manner enables us to capture a more comprehensive representation of context. We also introduce a Sequence Graph Attention layer to illustrate the proposed information update scheme. The experimental results show that sequence graph networks achieve superior results to existing methods in online debates.