Abstract:With the continuous advancement of human exploration into deep space, intelligent perception and high-precision segmentation technology for on-orbit multi-spacecraft targets have become critical factors for ensuring the success of modern space missions. However, the complex deep space environment, diverse imaging conditions, and high variability in spacecraft morphology pose significant challenges to traditional segmentation methods. This paper proposes SpaceSeg, an innovative vision foundation model-based segmentation framework with four core technical innovations: First, the Multi-Scale Hierarchical Attention Refinement Decoder (MSHARD) achieves high-precision feature decoding through cross-resolution feature fusion via hierarchical attention. Second, the Multi-spacecraft Connected Component Analysis (MS-CCA) effectively resolves topological structure confusion in dense targets. Third, the Spatial Domain Adaptation Transform framework (SDAT) eliminates cross-domain disparities and resist spatial sensor perturbations through composite enhancement strategies. Finally, a custom Multi-Spacecraft Segmentation Task Loss Function is created to significantly improve segmentation robustness in deep space scenarios. To support algorithm validation, we construct the first multi-scale on-orbit multi-spacecraft semantic segmentation dataset SpaceES, which covers four types of spatial backgrounds and 17 typical spacecraft targets. In testing, SpaceSeg achieves state-of-the-art performance with 89.87$\%$ mIoU and 99.98$\%$ mAcc, surpassing existing best methods by 5.71 percentage points. The dataset and code are open-sourced at https://github.com/Akibaru/SpaceSeg to provide critical technical support for next-generation space situational awareness systems.
Abstract:In this paper, an integrated path planning and tube-following control scheme is proposed for collision-free navigation of a wheeled mobile robot (WMR) in a compact convex workspace cluttered with sufficiently separated spherical obstacles. An analytical path planning algorithm is developed based on Bouligand's tangent cones and Nagumo's invariance theorem, which enables the WMR to navigate towards a designated goal location from almost all initial positions in the free space, without entering into augmented obstacle regions with safety margins. We further construct a virtual "safe tube" around the reference trajectory, ensuring that its radius does not exceed the size of the safety margin. Subsequently, a saturated adaptive controller is designed to achieve safe trajectory tracking in the presence of disturbances. It is shown that this tube-following controller guarantees that the WMR tracks the reference trajectory within the predefined tube, while achieving uniform ultimate boundedness of both the position tracking and parameter estimation errors. This indicates that the WMR will not collide with any obstacles along the way. Finally, we report simulation and experimental results to validate the effectiveness of the proposed method.