Abstract:The Internet is the most complex machine humankind has ever built, and how to defense it from intrusions is even more complex. With the ever increasing of new intrusions, intrusion detection task rely on Artificial Intelligence more and more. Interpretability and transparency of the machine learning model is the foundation of trust in AI-driven intrusion detection results. Current interpretation Artificial Intelligence technologies in intrusion detection are heuristic, which is neither accurate nor sufficient. This paper proposed a rigorous interpretable Artificial Intelligence driven intrusion detection approach, based on artificial immune system. Details of rigorous interpretation calculation process for a decision tree model is presented. Prime implicant explanation for benign traffic flow are given in detail as rule for negative selection of the cyber immune system. Experiments are carried out in real-life traffic.
Abstract:Automatic network management driven by Artificial Intelligent technologies has been heatedly discussed over decades. However, current reports mainly focus on theoretic proposals and architecture designs, works on practical implementations on real-life networks are yet to appear. This paper proposes our effort toward the implementation of knowledge graph driven approach for autonomic network management in software defined networks (SDNs), termed as SeaNet. Driven by the ToCo ontology, SeaNet is reprogrammed based on Mininet (a SDN emulator). It consists three core components, a knowledge graph generator, a SPARQL engine, and a network management API. The knowledge graph generator represents the knowledge in the telecommunication network management tasks into formally represented ontology driven model. Expert experience and network management rules can be formalized into knowledge graph and by automatically inferenced by SPARQL engine, Network management API is able to packet technology-specific details and expose technology-independent interfaces to users. The Experiments are carried out to evaluate proposed work by comparing with a commercial SDN controller Ryu implemented by the same language Python. The evaluation results show that SeaNet is considerably faster in most circumstances than Ryu and the SeaNet code is significantly more compact. Benefit from RDF reasoning, SeaNet is able to achieve O(1) time complexity on different scales of the knowledge graph while the traditional database can achieve O(nlogn) at its best. With the developed network management API, SeaNet enables researchers to develop semantic-intelligent applications on their own SDNs.
Abstract:Detecting Zero-Day intrusions has been the goal of Cybersecurity, especially intrusion detection for a long time. Machine learning is believed to be the promising methodology to solve that problem, numerous models have been proposed but a practical solution is still yet to come, mainly due to the limitation caused by the out-of-date open datasets available. In this paper, we take a deep inspection of the flow-based statistical data generated by CICFlowMeter, with six most popular machine learning classification models for Zero-Day attacks detection. The training dataset CIC-AWS-2018 Dataset contains fourteen types of intrusions, while the testing datasets contains eight different types of attacks. The six classification models are evaluated and cross validated on CIC-AWS-2018 Dataset for their accuracy in terms of false-positive rate, true-positive rate, and time overhead. Testing dataset, including eight novel (or Zero-Day) real-life attacks and benign traffic flows collected in real research production network are used to test the performance of the chosen decision tree classifier. Promising results are received with the accuracy as high as 100% and reasonable time overhead. We argue that with the statistical data collected from CICFlowMeter, simple machine learning models such as the decision tree classification could be able to take charge in detecting Zero-Day attacks.