Abstract:Identifying phases of flight is important in the field of general aviation, as knowing which phase of flight data is collected from aircraft flight data recorders can aid in the more effective detection of safety or hazardous events. General aviation flight data for phase of flight identification is usually per-second data, comes on a large scale, and is class imbalanced. It is expensive to manually label the data and training classification models usually faces class imbalance problems. This work investigates the use of a novel method for minimally supervised self-organizing maps (MS-SOMs) which utilize nearest neighbor majority votes in the SOM U-matrix for class estimation. Results show that the proposed method can reach or exceed a naive SOM approach which utilized a full data file of labeled data, with only 30 labeled datapoints per class. Additionally, the minimally supervised SOM is significantly more robust to the class imbalance of the phase of flight data. These results highlight how little data is required for effective phase of flight identification.
Abstract:The inclusion of semantic information in any similarity measures improves the efficiency of the similarity measure and provides human interpretable results for further analysis. The similarity calculation method that focuses on features related to the text's words only, will give less accurate results. This paper presents three different methods that not only focus on the text's words but also incorporates semantic information of texts in their feature vector and computes semantic similarities. These methods are based on corpus-based and knowledge-based methods, which are: cosine similarity using tf-idf vectors, cosine similarity using word embedding and soft cosine similarity using word embedding. Among these three, cosine similarity using tf-idf vectors performed best in finding similarities between short news texts. The similar texts given by the method are easy to interpret and can be used directly in other information retrieval applications.