Abstract:Deep learning models are known to suffer from the problem of bias, and researchers have been exploring methods to address this issue. However, most of these methods require prior knowledge of the bias and are not always practical. In this paper, we focus on a more practical setting with no prior information about the bias. Generally, in this setting, there are a large number of bias-aligned samples that cause the model to produce biased predictions and a few bias-conflicting samples that do not conform to the bias. If the training data is limited, the influence of the bias-aligned samples may become even stronger on the model predictions, and we experimentally demonstrate that existing debiasing techniques suffer severely in such cases. In this paper, we examine the effects of unknown bias in small dataset regimes and present a novel approach to mitigate this issue. The proposed approach directly addresses the issue of the extremely low occurrence of bias-conflicting samples in limited data settings through the synthesis of hybrid samples that can be used to reduce the effect of bias. We perform extensive experiments on several benchmark datasets and experimentally demonstrate the effectiveness of our proposed approach in addressing any unknown bias in the presence of limited data. Specifically, our approach outperforms the vanilla, LfF, LDD, and DebiAN debiasing methods by absolute margins of 10.39%, 9.08%, 8.07%, and 9.67% when only 10% of the Corrupted CIFAR-10 Type 1 dataset is available with a bias-conflicting sample ratio of 0.05.
Abstract:We perform a comparative analysis of transformer-based models designed for modeling tabular data, specifically on an industry-scale dataset. While earlier studies demonstrated promising outcomes on smaller public or synthetic datasets, the effectiveness did not extend to larger industry-scale datasets. The challenges identified include handling high-dimensional data, the necessity for efficient pre-processing of categorical and numerical features, and addressing substantial computational requirements. To overcome the identified challenges, the study conducts an extensive examination of various transformer-based models using both synthetic datasets and the default prediction Kaggle dataset (2022) from American Express. The paper presents crucial insights into optimal data pre-processing, compares pre-training and direct supervised learning methods, discusses strategies for managing categorical and numerical features, and highlights trade-offs between computational resources and performance. Focusing on temporal financial data modeling, the research aims to facilitate the systematic development and deployment of transformer-based models in real-world scenarios, emphasizing scalability.