Abstract:As artificial intelligence (AI) continues to advance, understanding public perceptions -- including biases, risks, and benefits -- is critical for guiding research priorities, shaping public discourse, and informing policy. This study explores public mental models of AI using micro scenarios to assess reactions to 71 statements about AI's potential future impacts. Drawing on cross-cultural samples from Germany (N=52) and China (N=60), we identify significant differences in expectations, evaluations, and risk-utility tradeoffs. German participants tended toward more cautious assessments, whereas Chinese participants expressed greater optimism regarding AI's societal benefits. Chinese participants exhibited relatively balanced risk-benefit tradeoffs ($\beta=-0.463$ for risk and $\beta=+0.484$ for benefit, $r^2=.630$). In contrast, German participants showed a stronger emphasis on AI benefits and less on risks ($\beta=-0.337$ for risk and $\beta=+0.715$ for benefit, $r^2=.839$). Visual cognitive maps illustrate these contrasts, offering new perspectives on how cultural contexts shape AI acceptance. Our findings underline key factors influencing public perception and provide actionable insights for fostering equitable and culturally sensitive integration of AI technologies.
Abstract:The digital transformation of production requires new methods of data integration and storage, as well as decision making and support systems that work vertically and horizontally throughout the development, production, and use cycle. In this paper, we propose Data-to-Knowledge (and Knowledge-to-Data) pipelines for production as a universal concept building on a network of Digital Shadows (a concept augmenting Digital Twins). We show a proof of concept that builds on and bridges existing infrastructure to 1) capture and semantically annotates trajectory data from multiple similar but independent robots in different organisations and use cases in a data lakehouse and 2) an independent process that dynamically queries matching data for training an inverse dynamic foundation model for robotic control. The article discusses the challenges and benefits of this approach and how Data-to-Knowledge pipelines contribute efficiency gains and industrial scalability in a World Wide Lab as a research outlook.
Abstract:Artificial Intelligence (AI) is transforming diverse societal domains, raising critical questions about its risks and benefits and the misalignments between public expectations and academic visions. This study examines how the general public (N=1110) -- people using or being affected by AI -- and academic AI experts (N=119) -- people shaping AI development -- perceive AI's capabilities and impact across 71 scenarios, including sustainability, healthcare, job performance, societal divides, art, and warfare. Participants evaluated each scenario on four dimensions: expected probability, perceived risk and benefit, and overall sentiment (or value). The findings reveal significant quantitative differences: experts anticipate higher probabilities, perceive lower risks, report greater utility, and express more favorable sentiment toward AI compared to the non-experts. Notably, risk-benefit tradeoffs differ: the public assigns risk half the weight of benefits, while experts assign it only a third. Visual maps of these evaluations highlight areas of convergence and divergence, identifying potential sources of public concern. These insights offer actionable guidance for researchers and policymakers to align AI development with societal values, fostering public trust and informed governance.
Abstract:Understanding public perception of artificial intelligence (AI) and the tradeoffs between potential risks and benefits is crucial, as these perceptions might shape policy decisions, influence innovation trajectories for successful market strategies, and determine individual and societal acceptance of AI technologies. Using a representative sample of 1100 participants from Germany, this study examines mental models of AI. Participants quantitatively evaluated 71 statements about AI's future capabilities (e.g., autonomous driving, medical care, art, politics, warfare, and societal divides), assessing the expected likelihood of occurrence, perceived risks, benefits, and overall value. We present rankings of these projections alongside visual mappings illustrating public risk-benefit tradeoffs. While many scenarios were deemed likely, participants often associated them with high risks, limited benefits, and low overall value. Across all scenarios, 96.4% ($r^2=96.4\%$) of the variance in value assessment can be explained by perceived risks ($\beta=-.504$) and perceived benefits ($\beta=+.710$), with no significant relation to expected likelihood. Demographics and personality traits influenced perceptions of risks, benefits, and overall evaluations, underscoring the importance of increasing AI literacy and tailoring public information to diverse user needs. These findings provide actionable insights for researchers, developers, and policymakers by highlighting critical public concerns and individual factors essential to align AI development with individual values.