Abstract:While intrusion detection systems (IDSs) benefit from the diversity and generalization of IoT data features, the data diversity (e.g., the heterogeneity and high dimensions of data) also makes it difficult to train effective machine learning models in IoT IDSs. This also leads to potentially redundant/noisy features that may decrease the accuracy of the detection engine in IDSs. This paper first introduces a novel neural network architecture called Multiple-Input Auto-Encoder (MIAE). MIAE consists of multiple sub-encoders that can process inputs from different sources with different characteristics. The MIAE model is trained in an unsupervised learning mode to transform the heterogeneous inputs into lower-dimensional representation, which helps classifiers distinguish between normal behaviour and different types of attacks. To distil and retain more relevant features but remove less important/redundant ones during the training process, we further design and embed a feature selection layer right after the representation layer of MIAE resulting in a new model called MIAEFS. This layer learns the importance of features in the representation vector, facilitating the selection of informative features from the representation vector. The results on three IDS datasets, i.e., NSLKDD, UNSW-NB15, and IDS2017, show the superior performance of MIAE and MIAEFS compared to other methods, e.g., conventional classifiers, dimensionality reduction models, unsupervised representation learning methods with different input dimensions, and unsupervised feature selection models. Moreover, MIAE and MIAEFS combined with the Random Forest (RF) classifier achieve accuracy of 96.5% in detecting sophisticated attacks, e.g., Slowloris. The average running time for detecting an attack sample using RF with the representation of MIAE and MIAEFS is approximate 1.7E-6 seconds, whilst the model size is lower than 1 MB.
Abstract:Representation Learning (RL) plays a pivotal role in the success of many problems including cyberattack detection. Most of the RL methods for cyberattack detection are based on the latent vector of Auto-Encoder (AE) models. An AE transforms raw data into a new latent representation that better exposes the underlying characteristics of the input data. Thus, it is very useful for identifying cyberattacks. However, due to the heterogeneity and sophistication of cyberattacks, the representation of AEs is often entangled/mixed resulting in the difficulty for downstream attack detection models. To tackle this problem, we propose a novel mod called Twin Auto-Encoder (TAE). TAE deterministically transforms the latent representation into a more distinguishable representation namely the \textit{separable representation} and the reconstructsuct the separable representation at the output. The output of TAE called the \textit{reconstruction representation} is input to downstream models to detect cyberattacks. We extensively evaluate the effectiveness of TAE using a wide range of bench-marking datasets. Experiment results show the superior accuracy of TAE over state-of-the-art RL models and well-known machine learning algorithms. Moreover, TAE also outperforms state-of-the-art models on some sophisticated and challenging attacks. We then investigate various characteristics of TAE to further demonstrate its superiority.
Abstract:Intrusion detection systems (IDSs) play a critical role in protecting billions of IoT devices from malicious attacks. However, the IDSs for IoT devices face inherent challenges of IoT systems, including the heterogeneity of IoT data/devices, the high dimensionality of training data, and the imbalanced data. Moreover, the deployment of IDSs on IoT systems is challenging, and sometimes impossible, due to the limited resources such as memory/storage and computing capability of typical IoT devices. To tackle these challenges, this article proposes a novel deep neural network/architecture called Constrained Twin Variational Auto-Encoder (CTVAE) that can feed classifiers of IDSs with more separable/distinguishable and lower-dimensional representation data. Additionally, in comparison to the state-of-the-art neural networks used in IDSs, CTVAE requires less memory/storage and computing power, hence making it more suitable for IoT IDS systems. Extensive experiments with the 11 most popular IoT botnet datasets show that CTVAE can boost around 1% in terms of accuracy and Fscore in detection attack compared to the state-of-the-art machine learning and representation learning methods, whilst the running time for attack detection is lower than 2E-6 seconds and the model size is lower than 1 MB. We also further investigate various characteristics of CTVAE in the latent space and in the reconstruction representation to demonstrate its efficacy compared with current well-known methods.