Abstract:This paper presents a conversational AI platform called Flowstorm. Flowstorm is an open-source SaaS project suitable for creating, running, and analyzing conversational applications. Thanks to the fast and fully automated build process, the dialogues created within the platform can be executed in seconds. Furthermore, we propose a novel dialogue architecture that uses a combination of tree structures with generative models. The tree structures are also used for training NLU models suitable for specific dialogue scenarios. However, the generative models are globally used across applications and extend the functionality of the dialogue trees. Moreover, the platform functionality benefits from out-of-the-box components, such as the one responsible for extracting data from utterances or working with crawled data. Additionally, it can be extended using a custom code directly in the platform. One of the essential features of the platform is the possibility to reuse the created assets across applications. There is a library of prepared assets where each developer can contribute. All of the features are available through a user-friendly visual editor.
Abstract:Conversational agents are usually designed for closed-world environments. Unfortunately, users can behave unexpectedly. Based on the open-world environment, we often encounter the situation that the training and test data are sampled from different distributions. Then, data from different distributions are called out-of-domain (OOD). A robust conversational agent needs to react to these OOD utterances adequately. Thus, the importance of robust OOD detection is emphasized. Unfortunately, collecting OOD data is a challenging task. We have designed an OOD detection algorithm independent of OOD data that outperforms a wide range of current state-of-the-art algorithms on publicly available datasets. Our algorithm is based on a simple but efficient approach of combining metric learning with adaptive decision boundary. Furthermore, compared to other algorithms, we have found that our proposed algorithm has significantly improved OOD performance in a scenario with a lower number of classes while preserving the accuracy for in-domain (IND) classes.
Abstract:The high prevalence of depression in society has given rise to the need for new digital tools to assist in its early detection. To this end, existing research has mainly focused on detecting depression in the domain of social media, where there is a sufficient amount of data. However, with the rise of conversational agents like Siri or Alexa, the conversational domain is becoming more critical. Unfortunately, there is a lack of data in the conversational domain. We perform a study focusing on domain adaptation from social media to the conversational domain. Our approach mainly exploits the linguistic information preserved in the vector representation of text. We describe transfer learning techniques to classify users who suffer from early signs of depression with high recall. We achieve state-of-the-art results on a commonly used conversational dataset, and we highlight how the method can easily be used in conversational agents. We publicly release all source code.
Abstract:The open domain-dialogue system Alquist has a goal to conduct a coherent and engaging conversation that can be considered as one of the benchmarks of social intelligence. The fourth version of the system, developed within the Alexa Prize Socialbot Grand Challenge 4, brings two main innovations. The first addresses coherence, and the second addresses the engagingness of the conversation. For innovations regarding coherence, we propose a novel hybrid approach combining hand-designed responses and a generative model. The proposed approach utilizes hand-designed dialogues, out-of-domain detection, and a neural response generator. Hand-designed dialogues walk the user through high-quality conversational flows. The out-of-domain detection recognizes that the user diverges from the predefined flow and prevents the system from producing a scripted response that might not make sense for unexpected user input. Finally, the neural response generator generates a response based on the context of the dialogue that correctly reacts to the unexpected user input and returns the dialogue to the boundaries of hand-designed dialogues. The innovations for engagement that we propose are mostly inspired by the famous exploration-exploitation dilemma. To conduct an engaging conversation with the dialogue partners, one has to learn their preferences and interests -- exploration. Moreover, to engage the partner, we have to utilize the knowledge we have already learned -- exploitation. In this work, we present the principles and inner workings of individual components of the open-domain dialogue system Alquist developed within the Alexa Prize Socialbot Grand Challenge 4 and the experiments we have conducted to evaluate them.
Abstract:The semantic understanding of natural dialogues composes of several parts. Some of them, like intent classification and entity detection, have a crucial role in deciding the next steps in handling user input. Handling each task as an individual problem can be wasting of training resources, and also each problem can benefit from each other. This paper tackles these problems as one. Our new model, which combine intent and entity recognition into one system, is achieving better metrics in both tasks with lower training requirements than solving each task separately. We also optimize the model based on the inputs.
Abstract:The foundation for the research of summarization in the Czech language was laid by the work of Straka et al. (2018). They published the SumeCzech, a large Czech news-based summarization dataset, and proposed several baseline approaches. However, it is clear from the achieved results that there is a large space for improvement. In our work, we focus on the impact of named entities on the summarization of Czech news articles. First, we annotate SumeCzech with named entities. We propose a new metric ROUGE_NE that measures the overlap of named entities between the true and generated summaries, and we show that it is still challenging for summarization systems to reach a high score in it. We propose an extractive summarization approach Named Entity Density that selects a sentence with the highest ratio between a number of entities and the length of the sentence as the summary of the article. The experiments show that the proposed approach reached results close to the solid baseline in the domain of news articles selecting the first sentence. Moreover, we demonstrate that the selected sentence reflects the style of reports concisely identifying to whom, when, where, and what happened. We propose that such a summary is beneficial in combination with the first sentence of an article in voice applications presenting news articles. We propose two abstractive summarization approaches based on Seq2Seq architecture. The first approach uses the tokens of the article. The second approach has access to the named entity annotations. The experiments show that both approaches exceed state-of-the-art results previously reported by Straka et al. (2018), with the latter achieving slightly better results on SumeCzech's out-of-domain testing set.
Abstract:The intent recognition is an essential algorithm of any conversational AI application. It is responsible for the classification of an input message into meaningful classes. In many bot development platforms, we can configure the NLU pipeline. Several intent recognition services are currently available as an API, or we choose from many open-source alternatives. However, there is no comparison of intent recognition services and open-source algorithms. Many factors make the selection of the right approach to the intent recognition challenging in practice. In this paper, we suggest criteria to choose the best intent recognition algorithm for an application. We present a dataset for evaluation. Finally, we compare selected public NLU services with selected open-source algorithms for intent recognition.
Abstract:The third version of the open-domain dialogue system Alquist developed within the Alexa Prize 2020 competition is designed to conduct coherent and engaging conversations on popular topics. The main novel contribution is the introduction of a system leveraging an innovative approach based on a conversational knowledge graph and adjacency pairs. The conversational knowledge graph allows the system to utilize knowledge expressed during the dialogue in consequent turns and across conversations. Dialogue adjacency pairs divide the conversation into small conversational structures, which can be combined and allow the system to react to a wide range of user inputs flexibly. We discuss and describe Alquist's pipeline, data acquisition and processing, dialogue manager, NLG, knowledge aggregation, and a hierarchy of adjacency pairs. We present the experimental results of the individual parts of the system.