Abstract:Accurate 3D human pose estimation (3D HPE) is crucial for enabling autonomous vehicles (AVs) to make informed decisions and respond proactively in critical road scenarios. Promising results of 3D HPE have been gained in several domains such as human-computer interaction, robotics, sports and medical analytics, often based on data collected in well-controlled laboratory environments. Nevertheless, the transfer of 3D HPE methods to AVs has received limited research attention, due to the challenges posed by obtaining accurate 3D pose annotations and the limited suitability of data from other domains. We present a simple yet efficient weakly supervised approach for 3D HPE in the AV context by employing a high-level sensor fusion between camera and LiDAR data. The weakly supervised setting enables training on the target datasets without any 2D/3D keypoint labels by using an off-the-shelf 2D joint extractor and pseudo labels generated from LiDAR to image projections. Our approach outperforms state-of-the-art results by up to $\sim$ 13% on the Waymo Open Dataset in the weakly supervised setting and achieves state-of-the-art results in the supervised setting.
Abstract:Image quality assessment (IQA) is an active research area in the field of image processing. Most prior works focus on visual quality of natural images captured by cameras. In this paper, we explore visual quality of scanned documents, focusing on raster image areas. Different from many existing works which aim to estimate a visual quality score, we propose a machine learning based classification method to determine whether the visual quality of a scanned raster image at a given resolution setting is acceptable. We conduct a psychophysical study to determine the acceptability at different image resolutions based on human subject ratings and use them as the ground truth to train our machine learning model. However, this dataset is unbalanced as most images were rated as visually acceptable. To address the data imbalance problem, we introduce several noise models to simulate the degradation of image quality during the scanning process. Our results show that by including augmented data in training, we can significantly improve the performance of the classifier to determine whether the visual quality of raster images in a scanned document is acceptable or not for a given resolution setting.