Abstract:We refer to a machine learning situation where models based on classical convolutional neural networks have shown good performance. We are investigating different encoding techniques in the form of supervoxels, then graphs to reduce the complexity of the model while tracking the loss of performance. This approach is illustrated on a recognition task of resting-state functional networks for patients with brain tumors. Graphs encoding supervoxels preserve activation characteristics of functional brain networks from images, optimize model parameters by 26 times while maintaining CNN model performance.
Abstract:In this paper, we propose a new super resolution technique based on the interpolation followed by registering them using iterative back projection (IBP). Low resolution images are being interpolated and then the interpolated images are being registered in order to generate a sharper high resolution image. The proposed technique has been tested on Lena, Elaine, Pepper, and Baboon. The quantitative peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) results as well as the visual results show the superiority of the proposed technique over the conventional and state-of-art image super resolution techniques. For Lena's image, the PSNR is 6.52 dB higher than the bicubic interpolation.