Abstract:Vertical federated learning trains models from feature-partitioned datasets across multiple clients, who collaborate without sharing their local data. Standard approaches assume that all feature partitions are available during both training and inference. Yet, in practice, this assumption rarely holds, as for many samples only a subset of the clients observe their partition. However, not utilizing incomplete samples during training harms generalization, and not supporting them during inference limits the utility of the model. Moreover, if any client leaves the federation after training, its partition becomes unavailable, rendering the learned model unusable. Missing feature blocks are therefore a key challenge limiting the applicability of vertical federated learning in real-world scenarios. To address this, we propose LASER-VFL, a vertical federated learning method for efficient training and inference of split neural network-based models that is capable of handling arbitrary sets of partitions. Our approach is simple yet effective, relying on the strategic sharing of model parameters and on task-sampling to train a family of predictors. We show that LASER-VFL achieves a $\mathcal{O}({1}/{\sqrt{T}})$ convergence rate for nonconvex objectives in general, $\mathcal{O}({1}/{T})$ for sufficiently large batch sizes, and linear convergence under the Polyak-{\L}ojasiewicz inequality. Numerical experiments show improved performance of LASER-VFL over the baselines. Remarkably, this is the case even in the absence of missing features. For example, for CIFAR-100, we see an improvement in accuracy of $21.4\%$ when each of four feature blocks is observed with a probability of 0.5 and of $12.2\%$ when all features are observed.
Abstract:Communication efficiency is a major challenge in federated learning (FL). In client-server schemes, the server constitutes a bottleneck, and while decentralized setups spread communications, they do not necessarily reduce them due to slower convergence. We propose Multi-Token Coordinate Descent (MTCD), a communication-efficient algorithm for semi-decentralized vertical federated learning, exploiting both client-server and client-client communications when each client holds a small subset of features. Our multi-token method can be seen as a parallel Markov chain (block) coordinate descent algorithm and it subsumes the client-server and decentralized setups as special cases. We obtain a convergence rate of $\mathcal{O}(1/T)$ for nonconvex objectives when tokens roam over disjoint subsets of clients and for convex objectives when they roam over possibly overlapping subsets. Numerical results show that MTCD improves the state-of-the-art communication efficiency and allows for a tunable amount of parallel communications.
Abstract:Expectation Maximization (EM) is the standard method to learn Gaussian mixtures. Yet its classic, centralized form is often infeasible, due to privacy concerns and computational and communication bottlenecks. Prior work dealt with data distributed by examples, horizontal partitioning, but we lack a counterpart for data scattered by features, an increasingly common scheme (e.g. user profiling with data from multiple entities). To fill this gap, we provide an EM-based algorithm to fit Gaussian mixtures to Vertically Partitioned data (VP-EM). In federated learning setups, our algorithm matches the centralized EM fitting of Gaussian mixtures constrained to a subspace. In arbitrary communication graphs, consensus averaging allows VP-EM to run on large peer-to-peer networks as an EM approximation. This mismatch comes from consensus error only, which vanishes exponentially fast with the number of consensus rounds. We demonstrate VP-EM on various topologies for both synthetic and real data, evaluating its approximation of centralized EM and seeing that it outperforms the available benchmark.