Abstract:Accurate global localization is crucial for autonomous navigation and planning. To this end, GPS-aided Visual-Inertial Odometry (GPS-VIO) fusion algorithms are proposed in the literature. This paper presents a novel GPS-VIO system that is able to significantly benefit from the online adaptive calibration of the rotational extrinsic parameter between the GPS reference frame and the VIO reference frame. The behind reason is this parameter is observable. This paper provides novel proof through nonlinear observability analysis. We also evaluate the proposed algorithm extensively on diverse platforms, including flying UAV and driving vehicle. The experimental results support the observability analysis and show increased localization accuracy in comparison to state-of-the-art (SOTA) tightly-coupled algorithms.
Abstract:This paper introduces a novel GPS-aided visual-wheel odometry (GPS-VWO) for ground robots. The state estimation algorithm tightly fuses visual, wheeled encoder and GPS measurements in the way of Multi-State Constraint Kalman Filter (MSCKF). To avoid accumulating calibration errors over time, the proposed algorithm calculates the extrinsic rotation parameter between the GPS global coordinate frame and the VWO reference frame online as part of the estimation process. The convergence of this extrinsic parameter is guaranteed by the observability analysis and verified by using real-world visual and wheel encoder measurements as well as simulated GPS measurements. Moreover, a novel theoretical finding is presented that the variance of unobservable state could converge to zero for specific Kalman filter system. We evaluate the proposed system extensively in large-scale urban driving scenarios. The results demonstrate that better accuracy than GPS is achieved through the fusion of GPS and VWO. The comparison between extrinsic parameter calibration and non-calibration shows significant improvement in localization accuracy thanks to the online calibration.