Abstract:Feature selection in Knowledge Graphs (KGs) are increasingly utilized in diverse domains, including biomedical research, Natural Language Processing (NLP), and personalized recommendation systems. This paper delves into the methodologies for feature selection within KGs, emphasizing their roles in enhancing machine learning (ML) model efficacy, hypothesis generation, and interpretability. Through this comprehensive review, we aim to catalyze further innovation in feature selection for KGs, paving the way for more insightful, efficient, and interpretable analytical models across various domains. Our exploration reveals the critical importance of scalability, accuracy, and interpretability in feature selection techniques, advocating for the integration of domain knowledge to refine the selection process. We highlight the burgeoning potential of multi-objective optimization and interdisciplinary collaboration in advancing KG feature selection, underscoring the transformative impact of such methodologies on precision medicine, among other fields. The paper concludes by charting future directions, including the development of scalable, dynamic feature selection algorithms and the integration of explainable AI principles to foster transparency and trust in KG-driven models.
Abstract:Automated machine learning (AutoML) algorithms have grown in popularity due to their high performance and flexibility to adapt to different problems and data sets. With the increasing number of AutoML algorithms, deciding which would best suit a given problem becomes increasingly more work. Therefore, it is essential to use complex and challenging benchmarks which would be able to differentiate the AutoML algorithms from each other. This paper compares the performance of four different AutoML algorithms: Tree-based Pipeline Optimization Tool (TPOT), Auto-Sklearn, Auto-Sklearn 2, and H2O AutoML. We use the Diverse and Generative ML benchmark (DIGEN), a diverse set of synthetic datasets derived from generative functions designed to highlight the strengths and weaknesses of the performance of common machine learning algorithms. We confirm that AutoML can identify pipelines that perform well on all included datasets. Most AutoML algorithms performed similarly without much room for improvement; however, some were more consistent than others at finding high-performing solutions for some datasets.