Abstract:Recent studies on the Shapes Constraint Language (SHACL), a W3C specification for validating RDF graphs, rely on translating the language into first-order logic in order to provide formally-grounded solutions to the validation, containment and satisfiability decision problems. Continuing on this line of research, we introduce SHACL2FOL, the first automatic tool that (i) translates SHACL documents into FOL sentences and (ii) computes the answer to the two static analysis problems of satisfiability and containment; it also allow to test the validity of a graph with respect to a set of constraints. By integrating with existing theorem provers, such as E and Vampire, the tool computes the answer to the aforementioned decision problems and outputs the corresponding first-order logic theories in the standard TPTP format. We believe this tool can contribute to further theoretical studies of SHACL, by providing an automatic first-order logic interpretation of its semantics, while also benefiting SHACL practitioners, by supplying static analysis capabilities to help the creation and management of SHACL constraints.
Abstract:We present an introduction and a review of the Shapes Constraint Language (SHACL), the W3C recommendation language for validating RDF data. A SHACL document describes a set of constraints on RDF nodes, and a graph is valid with respect to the document if its nodes satisfy these constraints. We revisit the basic concepts of the language, its constructs and components and their interaction. We review the different formal frameworks used to study this language and the different semantics proposed. We examine a number of related problems, from containment and satisfiability to the interaction of SHACL with inference rules, and exhibit how different modellings of the language are useful for different problems. We also cover practical aspects of SHACL, discussing its implementations and state of adoption, to present a holistic review useful to practitioners and theoreticians alike.
Abstract:The Shapes Constraint Language (SHACL) is the recent W3C recommendation language for validating RDF data, by verifying certain shapes on graphs. Previous work has largely focused on the validation problem and the standard decision problems of satisfiability and containment, crucial for design and optimisation purposes, have only been investigated for simplified versions of SHACL. Moreover, the SHACL specification does not define the semantics of recursively-defined constraints, which led to several alternative recursive semantics being proposed in the literature. The interaction between these different semantics and important decision problems has not been investigated yet. In this article we provide a comprehensive study of the different features of SHACL, by providing a translation to a new first-order language, called SCL, that precisely captures the semantics of SHACL. We also present MSCL, a second-order extension of SCL, which allows us to define, in a single formal logic framework, the main recursive semantics of SHACL. Within this language we also provide an effective treatment of filter constraints which are often neglected in the related literature. Using this logic we provide a detailed map of (un)decidability and complexity results for the satisfiability and containment decision problems for different SHACL fragments. Notably, we prove that both problems are undecidable for the full language, but we present decidable combinations of interesting features, even in the face of recursion.
Abstract:The Shapes Constraint Language (SHACL) is a recent W3C recommendation language for validating RDF data. Specifically, SHACL documents are collections of constraints that enforce particular shapes on an RDF graph. Previous work on the topic has provided theoretical and practical results for the validation problem, but did not consider the standard decision problems of satisfiability and containment, which are crucial for verifying the feasibility of the constraints and important for design and optimization purposes. In this paper, we undertake a thorough study of different features of non-recursive SHACL by providing a translation to a new first-order language, called SCL, that precisely captures the semantics of SHACL w.r.t. satisfiability and containment. We study the interaction of SHACL features in this logic and provide the detailed map of decidability and complexity results of the aforementioned decision problems for different SHACL sublanguages. Notably, we prove that both problems are undecidable for the full language, but we present decidable combinations of interesting features.
Abstract:An important use of sensors and actuator networks is to comply with health and safety policies in hazardous environments. In order to deal with increasingly large and dynamic environments, and to quickly react to emergencies, tools are needed to simplify the process of translating high-level policies into executable queries and rules. We present a framework to produce such tools, which uses rules to aggregate low-level sensor data, described using the Semantic Sensor Network Ontology, into more useful and actionable abstractions. Using the schema of the underlying data sources as an input, we automatically generate abstractions which are relevant to the use case at hand. In this demonstration we present a policy editor tool and a simulation on which policies can be tested.
Abstract:The Shapes Constraint Language (SHACL) has been recently introduced as a W3C recommendation to define constraints that can be validated against RDF graphs. Interactions of SHACL with other Semantic Web technologies, such as ontologies or reasoners, is a matter of ongoing research. In this paper we study the interaction of a subset of SHACL with inference rules expressed in datalog. On the one hand, SHACL constraints can be used to define a "schema" for graph datasets. On the other hand, inference rules can lead to the discovery of new facts that do not match the original schema. Given a set of SHACL constraints and a set of datalog rules, we present a method to detect which constraints could be violated by the application of the inference rules on some graph instance of the schema, and update the original schema, i.e, the set of SHACL constraints, in order to capture the new facts that can be inferred. We provide theoretical and experimental results of the various components of our approach.
Abstract:Rule-based systems play a critical role in health and safety, where policies created by experts are usually formalised as rules. When dealing with increasingly large and dynamic sources of data, as in the case of Internet of Things (IoT) applications, it becomes important not only to efficiently apply rules, but also to reason about their applicability on datasets confined by a certain schema. In this paper we define the notion of a triplestore schema which models a set of RDF graphs. Given a set of rules and such a schema as input we propose a method to determine rule applicability and produce output schemas. Output schemas model the graphs that would be obtained by running the rules on the graph models of the input schema. We present two approaches: one based on computing a canonical (critical) instance of the schema, and a novel approach based on query rewriting. We provide theoretical, complexity and evaluation results that show the superior efficiency of our rewriting approach.
Abstract:This paper presents the first framework for integrating procedural knowledge, or "know-how", into the Linked Data Cloud. Know-how available on the Web, such as step-by-step instructions, is largely unstructured and isolated from other sources of online knowledge. To overcome these limitations, we propose extending to procedural knowledge the benefits that Linked Data has already brought to representing, retrieving and reusing declarative knowledge. We describe a framework for representing generic know-how as Linked Data and for automatically acquiring this representation from existing resources on the Web. This system also allows the automatic generation of links between different know-how resources, and between those resources and other online knowledge bases, such as DBpedia. We discuss the results of applying this framework to a real-world scenario and we show how it outperforms existing manual community-driven integration efforts.
Abstract:The increasing amount of available Linked Data resources is laying the foundations for more advanced Semantic Web applications. One of their main limitations, however, remains the general low level of data quality. In this paper we focus on a measure of quality which is negatively affected by the increase of the available resources. We propose a measure of semantic richness of Linked Data concepts and we demonstrate our hypothesis that the more a concept is reused, the less semantically rich it becomes. This is a significant scalability issue, as one of the core aspects of Linked Data is the propagation of semantic information on the Web by reusing common terms. We prove our hypothesis with respect to our measure of semantic richness and we validate our model empirically. Finally, we suggest possible future directions to address this scalability problem.
Abstract:This paper proposes a novel framework for representing community know-how on the Semantic Web. Procedural knowledge generated by web communities typically takes the form of natural language instructions or videos and is largely unstructured. The absence of semantic structure impedes the deployment of many useful applications, in particular the ability to discover and integrate know-how automatically. We discuss the characteristics of community know-how and argue that existing knowledge representation frameworks fail to represent it adequately. We present a novel framework for representing the semantic structure of community know-how and demonstrate the feasibility of our approach by providing a concrete implementation which includes a method for automatically acquiring procedural knowledge for real-world tasks.