Abstract:The majority of IoT devices like smartwatches, smart plugs, HVAC controllers, etc., are powered by hardware with a constrained specification (low memory, clock speed and processor) which is insufficient to accommodate and execute large, high-quality models. On such resource-constrained devices, manufacturers still manage to provide attractive functionalities (to boost sales) by following the traditional approach of programming IoT devices/products to collect and transmit data (image, audio, sensor readings, etc.) to their cloud-based ML analytics platforms. For decades, this online approach has been facing issues such as compromised data streams, non-real-time analytics due to latency, bandwidth constraints, costly subscriptions, recent privacy issues raised by users and the GDPR guidelines, etc. In this paper, to enable ultra-fast and accurate AI-based offline analytics on resource-constrained IoT devices, we present an end-to-end multi-component model optimization sequence and open-source its implementation. Researchers and developers can use our optimization sequence to optimize high memory, computation demanding models in multiple aspects in order to produce small size, low latency, low-power consuming models that can comfortably fit and execute on resource-constrained hardware. The experimental results show that our optimization components can produce models that are; (i) 12.06 x times compressed; (ii) 0.13% to 0.27% more accurate; (iii) Orders of magnitude faster unit inference at 0.06 ms. Our optimization sequence is generic and can be applied to any state-of-the-art models trained for anomaly detection, predictive maintenance, robotics, voice recognition, and machine vision.
Abstract:The objective of an online Mart is to match buyers and sellers, to weigh animals and to oversee their sale. A reliable pricing method can be developed by ML models that can read through historical sales data. However, when AI models suggest or recommend a price, that in itself does not reveal too much (i.e., it acts like a black box) about the qualities and the abilities of an animal. An interested buyer would like to know more about the salient features of an animal before making the right choice based on his requirements. A model capable of explaining the different factors that impact the price point is essential for the needs of the market. It can also inspire confidence in buyers and sellers about the price point offered. To achieve these objectives, we have been working with the team at MartEye, a startup based in Portershed in Galway City, Ireland. Through this paper, we report our work-in-progress research towards building a smart video analytic platform, leveraging Explainable AI techniques.
Abstract:With the increasing availability of structured and unstructured data and the swift progress of analytical techniques, Artificial Intelligence (AI) is bringing a revolution to the healthcare industry. With the increasingly indispensable role of AI in healthcare, there are growing concerns over the lack of transparency and explainability in addition to potential bias encountered by predictions of the model. This is where Explainable Artificial Intelligence (XAI) comes into the picture. XAI increases the trust placed in an AI system by medical practitioners as well as AI researchers, and thus, eventually, leads to an increasingly widespread deployment of AI in healthcare. In this paper, we present different interpretability techniques. The aim is to enlighten practitioners on the understandability and interpretability of explainable AI systems using a variety of techniques available which can be very advantageous in the health-care domain. Medical diagnosis model is responsible for human life and we need to be confident enough to treat a patient as instructed by a black-box model. Our paper contains examples based on the heart disease dataset and elucidates on how the explainability techniques should be preferred to create trustworthiness while using AI systems in healthcare.
Abstract:Smart doorbells have been playing an important role in protecting our modern homes. Existing approaches of sending video streams to a centralized server (or Cloud) for video analytics have been facing many challenges such as latency, bandwidth cost and more importantly users' privacy concerns. To address these challenges, this paper showcases the ability of an intelligent smart doorbell based on Federated Deep Learning, which can deploy and manage video analytics applications such as a smart doorbell across Edge and Cloud resources. This platform can scale, work with multiple devices, seamlessly manage online orchestration of the application components. The proposed framework is implemented using state-of-the-art technology. We implement the Federated Server using the Flask framework, containerized using Nginx and Gunicorn, which is deployed on AWS EC2 and AWS Serverless architecture.
Abstract:The design of products and services such as a Smart doorbell, demonstrating video analytics software/algorithm functionality, is expected to address a new kind of requirements such as designing a scalable solution while considering the trade-off between cost and accuracy; a flexible architecture to deploy new AI-based models or update existing models, as user requirements evolve; as well as seamlessly integrating different kinds of user interfaces and devices. To address these challenges, we propose a smart doorbell that orchestrates video analytics across Edge and Cloud resources. The proposal uses AWS as a base platform for implementation and leverages Commercially Available Off-The-Shelf(COTS) affordable devices such as Raspberry Pi in the form of an Edge device.