Abstract:The ethical issues concerning the AI-based exoskeletons used in healthcare have already been studied literally rather than technically. How the ethical guidelines can be integrated into the development process has not been widely studied. However, this is one of the most important topics which should be studied more in real-life applications. Therefore, in this paper we highlight one ethical concern in the context of an exoskeleton used to train a user to perform a gesture: during the interaction between the exoskeleton, patient and therapist, how is the responsibility for decision making distributed? Based on the outcome of this, we will discuss how to integrate ethical guidelines into the development process of an AI-based exoskeleton. The discussion is based on a case study: AiBle. The different technical factors affecting the rehabilitation results and the human-machine interaction for AI-based exoskeletons are identified and discussed in this paper in order to better apply the ethical guidelines during the development of AI-based exoskeletons.
Abstract:While automatic monitoring and coaching of exercises are showing encouraging results in non-medical applications, they still have limitations such as errors and limited use contexts. To allow the development and assessment of physical rehabilitation by an intelligent tutoring system, we identify in this article four challenges to address and propose a medical dataset of clinical patients carrying out low back-pain rehabilitation exercises. The dataset includes 3D Kinect skeleton positions and orientations, RGB videos, 2D skeleton data, and medical annotations to assess the correctness, and error classification and localisation of body part and timespan. Along this dataset, we perform a complete research path, from data collection to processing, and finally a small benchmark. We evaluated on the dataset two baseline movement recognition algorithms, pertaining to two different approaches: the probabilistic approach with a Gaussian Mixture Model (GMM), and the deep learning approach with a Long-Short Term Memory (LSTM). This dataset is valuable because it includes rehabilitation relevant motions in a clinical setting with patients in their rehabilitation program, using a cost-effective, portable, and convenient sensor, and because it shows the potential for improvement on these challenges.