Abstract:This study presents the outcomes of empirical investigations pertaining to human-vehicle interactions involving an autonomous vehicle equipped with both internal and external Human Machine Interfaces (HMIs) within a crosswalk scenario. The internal and external HMIs were integrated with implicit communication techniques, incorporating a combination of gentle and aggressive braking maneuvers within the crosswalk. Data were collected through a combination of questionnaires and quantifiable metrics, including pedestrian decision to cross related to the vehicle distance and speed. The questionnaire responses reveal that pedestrians experience enhanced safety perceptions when the external HMI and gentle braking maneuvers are used in tandem. In contrast, the measured variables demonstrate that the external HMI proves effective when complemented by the gentle braking maneuver. Furthermore, the questionnaire results highlight that the internal HMI enhances passenger confidence only when paired with the aggressive braking maneuver.
Abstract:This paper presents a dataset, called Reeds, for research on robot perception algorithms. The dataset aims to provide demanding benchmark opportunities for algorithms, rather than providing an environment for testing application-specific solutions. A boat was selected as a logging platform in order to provide highly dynamic kinematics. The sensor package includes six high-performance vision sensors, two long-range lidars, radar, as well as GNSS and an IMU. The spatiotemporal resolution of sensors were maximized in order to provide large variations and flexibility in the data, offering evaluation at a large number of different resolution presets based on the resolution found in other datasets. Reeds also provides means of a fair and reproducible comparison of algorithms, by running all evaluations on a common server backend. As the dataset contains massive-scale data, the evaluation principle also serves as a way to avoid moving data unnecessarily. It was also found that naive evaluation of algorithms, where each evaluation is computed sequentially, was not practical as the fetch and decode task of each frame would not scale well. Instead, each frame is only decoded once and then fed to all algorithms in parallel, including for GPU-based algorithms.