Abstract:The advancements in nanotechnology, material science, and electrical engineering have shrunk the sizes of electronic devices down to the micro/nanoscale. This brings the opportunity of developing the Internet of Nano Things (IoNT), an extension of the Internet of Things (IoT). With nanodevices, numerous new possibilities emerge in the biomedical, military fields, and industrial products. However, a continuous energy supply is needed for these devices to work. At the micro/nanoscale, batteries cannot supply this demand due to size limitations and the limited energy contained in the batteries. Internet of Harvester Nano Things (IoHNT), a concept of Energy Harvesting (EH), which converts the existing different energy sources, which otherwise would be dissipated to waste, into electrical energy via electrical generators. Sources for EH are abundant, from sunlight, sound, water, and airflow to living organisms. IoHNT methods are significant assets to ensure the proper operation of the IoNT; thus, in this review, we comprehensively investigate the most useful energy sources and IoHNT principles to power the nano/micro-scaled electronic devices with the scope of IoNT. We discuss the IoHNT principles, material selections, challenges, and state-of-the-art applications of each energy source for both in-vivo and in vitro applications. Finally, we present the latest challenges of EH along with future research directions to solve the problems regarding constructing continuous IoNT containing various self-powered nanodevices. Therefore, IoHNT represents a significant shift in nanodevice power supply, leading us towards a future where wireless technology is widespread. Hence, it will motivate researchers to envision and contribute to the advancement of the following power revolution in IoNT, providing unmatched simplicity and efficiency.
Abstract:Humankind mimics the processes and strategies that nature has perfected and uses them as a model to address its problems. That has recently found a new direction, i.e., a novel communication technology called molecular communication (MC), using molecules to encode, transmit, and receive information. Despite extensive research, an innate MC method with plenty of natural instances, i.e., olfactory or odor communication, has not yet been studied with the tools of information and communication technologies (ICT). Existing studies focus on digitizing this sense and developing actuators without inspecting the principles of odor-based information coding and MC, which significantly limits its application potential. Hence, there is a need to focus cross-disciplinary research efforts to reveal the fundamentals of this unconventional communication modality from an ICT perspective. The ways of natural odor MC in nature need to be anatomized and engineered for end-to-end communication among humans and human-made things to enable several multi-sense augmented reality technologies reinforced with olfactory senses for novel applications and solutions in the Internet of Everything (IoE). This paper introduces the concept of odor-based molecular communication (OMC) and provides a comprehensive examination of olfactory systems. It explores odor communication in nature, including aspects of odor information, channels, reception, spatial perception, and cognitive functions. Additionally, a comprehensive comparison of various communication systems sets the foundation for further investigation. By highlighting the unique characteristics, advantages, and potential applications of OMC through this comparative analysis, the paper lays the groundwork for exploring the modeling of an end-to-end OMC channel, considering the design of OMC transmitters and receivers, and developing innovative OMC techniques.
Abstract:We present a path loss model that accurately predicts the path loss with low computational complexity considering environmental factors. In the proposed model, the entire area under consideration is recognized and divided into regions from a raster map, and each type of region is assigned with a path loss exponent (PLE) value. We then extract the model parameters via measurement in a suburban area to verify the proposed model. The results show that the root mean square error (RMSE) of the proposed model is 1.4 dB smaller than the widely used log-distance model.