The advancements in nanotechnology, material science, and electrical engineering have shrunk the sizes of electronic devices down to the micro/nanoscale. This brings the opportunity of developing the Internet of Nano Things (IoNT), an extension of the Internet of Things (IoT). With nanodevices, numerous new possibilities emerge in the biomedical, military fields, and industrial products. However, a continuous energy supply is needed for these devices to work. At the micro/nanoscale, batteries cannot supply this demand due to size limitations and the limited energy contained in the batteries. Internet of Harvester Nano Things (IoHNT), a concept of Energy Harvesting (EH), which converts the existing different energy sources, which otherwise would be dissipated to waste, into electrical energy via electrical generators. Sources for EH are abundant, from sunlight, sound, water, and airflow to living organisms. IoHNT methods are significant assets to ensure the proper operation of the IoNT; thus, in this review, we comprehensively investigate the most useful energy sources and IoHNT principles to power the nano/micro-scaled electronic devices with the scope of IoNT. We discuss the IoHNT principles, material selections, challenges, and state-of-the-art applications of each energy source for both in-vivo and in vitro applications. Finally, we present the latest challenges of EH along with future research directions to solve the problems regarding constructing continuous IoNT containing various self-powered nanodevices. Therefore, IoHNT represents a significant shift in nanodevice power supply, leading us towards a future where wireless technology is widespread. Hence, it will motivate researchers to envision and contribute to the advancement of the following power revolution in IoNT, providing unmatched simplicity and efficiency.