Abstract:In this paper, we characterize the adaptive multiple path loss exponent (AMPLE) radio propagation model under urban macrocell (UMa) and urban microcell (UMi) scenarios from 0.85-5 GHz using Ranplan Professional. We first enhance the original AMPLE model by introducing an additional frequency coefficient to support path loss prediction across multiple carrier frequencies. By using measurement-validated Ranplan Professional simulator, we simulate four cities and validate the simulations for further path loss model characterization. Specifically, we extract the close-in (CI) model parameters from the simulations and compare them with parameters extracted from measurements in other works. Under the ray-based model characterization, we compare the AMPLE model with the 3rd Generation Partnership Project (3GPP) path loss model, the CI model, the alpha-beta-gamma (ABG) model, and those with simulation calibrations. In addition to standard performance metrics, we introduce the prediction-measurement difference error (PMDE) to assess overall prediction alignment with measurement, and mean simulation time per data point to evaluate model complexity. The results show that the AMPLE model outperforms existing models while maintaining similar model complexity.
Abstract:We present a path loss model that accurately predicts the path loss with low computational complexity considering environmental factors. In the proposed model, the entire area under consideration is recognized and divided into regions from a raster map, and each type of region is assigned with a path loss exponent (PLE) value. We then extract the model parameters via measurement in a suburban area to verify the proposed model. The results show that the root mean square error (RMSE) of the proposed model is 1.4 dB smaller than the widely used log-distance model.