Abstract:Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems. In this paper, we propose the first unified interpretation for existing zero-shot methods from the perspective of approximating the conditional posterior mean for the reverse diffusion process of conditional sampling. We reveal that recent methods are equivalent to making isotropic Gaussian approximations to intractable posterior distributions over clean images given diffused noisy images, with the only difference in the handcrafted design of isotropic posterior covariances. Inspired by this finding, we propose a general plug-and-play posterior covariance optimization based on maximum likelihood estimation to improve recent methods. To achieve optimal posterior covariance without retraining, we provide general solutions based on two approaches specifically designed to leverage pre-trained models with and without reverse covariances. Experimental results demonstrate that the proposed methods significantly enhance the overall performance or robustness to hyperparameters of recent methods. Code is available at https://github.com/xypeng9903/k-diffusion-inverse-problems