Abstract:Today, deep neural networks are widely used since they can handle a variety of complex tasks. Their generality makes them very powerful tools in modern technology. However, deep neural networks are often overparameterized. The usage of these large models consumes a lot of computation resources. In this paper, we introduce a method called \textbf{T}ill the \textbf{L}ayers \textbf{C}ollapse (TLC), which compresses deep neural networks through the lenses of batch normalization layers. By reducing the depth of these networks, our method decreases deep neural networks' computational requirements and overall latency. We validate our method on popular models such as Swin-T, MobileNet-V2, and RoBERTa, across both image classification and natural language processing (NLP) tasks.
Abstract:Although deep neural networks are well-known for their remarkable performance in tackling complex tasks, their hunger for computational resources remains a significant hurdle, posing energy-consumption issues and restricting their deployment on resource-constrained devices, which stalls their widespread adoption. In this paper, we present an optimal transport method to reduce the depth of over-parametrized deep neural networks, alleviating their computational burden. More specifically, we propose a new regularization strategy based on the Max-Sliced Wasserstein distance to minimize the distance between the intermediate feature distributions in the neural network. We show that minimizing this distance enables the complete removal of intermediate layers in the network, with almost no performance loss and without requiring any finetuning. We assess the effectiveness of our method on traditional image classification setups. We commit to releasing the source code upon acceptance of the article.