Abstract:The development of practical and robust automated diagnostic systems for identifying plant pests is crucial for efficient agricultural production. In this paper, we first investigate three key research questions (RQs) that have not been addressed thus far in the field of image-based plant pest identification. Based on the knowledge gained, we then develop an accurate, robust, and fast plant pest identification framework using 334K images comprising 78 combinations of four plant portions (the leaf front, leaf back, fruit, and flower of cucumber, tomato, strawberry, and eggplant) and 20 pest species captured at 27 farms. The results reveal the following. (1) For an appropriate evaluation of the model, the test data should not include images of the field from which the training images were collected, or other considerations to increase the diversity of the test set should be taken into account. (2) Pre-extraction of ROIs, such as leaves and fruits, helps to improve identification accuracy. (3) Integration of closely related species using the same control methods and cross-crop training methods for the same pests, are effective. Our two-stage plant pest identification framework, enabling ROI detection and convolutional neural network (CNN)-based identification, achieved a highly practical performance of 91.0% and 88.5% in mean accuracy and macro F1 score, respectively, for 12,223 instances of test data of 21 classes collected from unseen fields, where 25 classes of images from 318,971 samples were used for training; the average identification time was 476 ms/image.
Abstract:With rich annotation information, object detection-based automated plant disease diagnosis systems (e.g., YOLO-based systems) often provide advantages over classification-based systems (e.g., EfficientNet-based), such as the ability to detect disease locations and superior classification performance. One drawback of these detection systems is dealing with unannotated healthy data with no real symptoms present. In practice, healthy plant data appear to be very similar to many disease data. Thus, those models often produce mis-detected boxes on healthy images. In addition, labeling new data for detection models is typically time-consuming. Hard-sample mining (HSM) is a common technique for re-training a model by using the mis-detected boxes as new training samples. However, blindly selecting an arbitrary amount of hard-sample for re-training will result in the degradation of diagnostic performance for other diseases due to the high similarity between disease and healthy data. In this paper, we propose a simple but effective training strategy called hard-sample re-mining (HSReM), which is designed to enhance the diagnostic performance of healthy data and simultaneously improve the performance of disease data by strategically selecting hard-sample training images at an appropriate level. Experiments based on two practical in-field eight-class cucumber and ten-class tomato datasets (42.7K and 35.6K images) show that our HSReM training strategy leads to a substantial improvement in the overall diagnostic performance on large-scale unseen data. Specifically, the object detection model trained using the HSReM strategy not only achieved superior results as compared to the classification-based state-of-the-art EfficientNetV2-Large model and the original object detection model, but also outperformed the model using the HSM strategy.