Abstract:We address the problem of efficiently verifying a commitment in a two-party computation. This addresses the scenario where a party P1 commits to a value $x$ to be used in a subsequent secure computation with another party P2 that wants to receive assurance that P1 did not cheat, i.e. that $x$ was indeed the value inputted into the secure computation. Our constructions operate in the publicly verifiable covert (PVC) security model, which is a relaxation of the malicious model of MPC appropriate in settings where P1 faces a reputational harm if caught cheating. We introduce the notion of PVC commitment scheme and indexed hash functions to build commitments schemes tailored to the PVC framework, and propose constructions for both arithmetic and Boolean circuits that result in very efficient circuits. From a practical standpoint, our constructions for Boolean circuits are $60\times$ faster to evaluate securely, and use $36\times$ less communication than baseline methods based on hashing. Moreover, we show that our constructions are tight in terms of required non-linear operations, by proving lower bounds on the nonlinear gate count of commitment verification circuits. Finally, we present a technique to amplify the security properties our constructions that allows to efficiently recover malicious guarantees with statistical security.
Abstract:Recently, there has been a wealth of effort devoted to the design of secure protocols for machine learning tasks. Much of this is aimed at enabling secure prediction from highly-accurate Deep Neural Networks (DNNs). However, as DNNs are trained on data, a key question is how such models can be also trained securely. The few prior works on secure DNN training have focused either on designing custom protocols for existing training algorithms, or on developing tailored training algorithms and then applying generic secure protocols. In this work, we investigate the advantages of designing training algorithms alongside a novel secure protocol, incorporating optimizations on both fronts. We present QUOTIENT, a new method for discretized training of DNNs, along with a customized secure two-party protocol for it. QUOTIENT incorporates key components of state-of-the-art DNN training such as layer normalization and adaptive gradient methods, and improves upon the state-of-the-art in DNN training in two-party computation. Compared to prior work, we obtain an improvement of 50X in WAN time and 6% in absolute accuracy.