Abstract:Recent Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing across wide range of styles and genres. However, such capabilities are prone to potential abuse, such as fake news generation, spam email creation, and misuse in academic assignments. Hence, it is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text. In this paper, we propose a simple yet efficient solution to this problem by ensembling predictions from multiple constituent LLMs. Compared to previous state-of-the-art approaches, which are perplexity-based or uses ensembles with a number of LLMs, our condensed ensembling approach uses only two constituent LLMs to achieve comparable performance. Experiments conducted on four benchmark datasets for generative text classification show performance improvements in the range of 0.5 to 100\% compared to previous state-of-the-art approaches. We also study the influence that the training data from individual LLMs have on model performance. We found that substituting commercially-restrictive Generative Pre-trained Transformer (GPT) data with data generated from other open language models such as Falcon, Large Language Model Meta AI (LLaMA2), and Mosaic Pretrained Transformers (MPT) is a feasible alternative when developing generative text detectors. Furthermore, to demonstrate zero-shot generalization, we experimented with an English essays dataset, and results suggest that our ensembling approach can handle new data effectively.
Abstract:Large Language Models (LLMs) have shown impressive performance across a variety of Artificial Intelligence (AI) and natural language processing tasks, such as content creation, report generation, etc. However, unregulated malign application of these models can create undesirable consequences such as generation of fake news, plagiarism, etc. As a result, accurate detection of AI-generated language can be crucial in responsible usage of LLMs. In this work, we explore 1) whether a certain body of text is AI generated or written by human, and 2) attribution of a specific language model in generating a body of text. Texts in both English and Spanish are considered. The datasets used in this study are provided as part of the Automated Text Identification (AuTexTification) shared task. For each of the research objectives stated above, we propose an ensemble neural model that generates probabilities from different pre-trained LLMs which are used as features to a Traditional Machine Learning (TML) classifier following it. For the first task of distinguishing between AI and human generated text, our model ranked in fifth and thirteenth place (with macro $F1$ scores of 0.733 and 0.649) for English and Spanish texts, respectively. For the second task on model attribution, our model ranked in first place with macro $F1$ scores of 0.625 and 0.653 for English and Spanish texts, respectively.