Abstract:Although robots are becoming more advanced with human-like anthropomorphic features and decision-making abilities to improve collaboration, the active integration of humans into this process remains under-explored. This article presents the first experimental study exploring decision-making interactions between humans and robots with visual cues from robotic eyes, which can dynamically influence human opinion formation. The cues generated by robotic eyes gradually guide human decisions towards alignment with the robot's choices. Both human and robot decision-making processes are modeled as non-linear opinion dynamics with evolving biases. To examine these opinion dynamics under varying biases, we conduct numerical parametric and equilibrium continuation analyses using tuned parameters designed explicitly for the presented human-robot interaction experiment. Furthermore, to facilitate the transition from disagreement to agreement, we introduced a human opinion observation algorithm integrated with the formation of the robot's opinion, where the robot's behavior is controlled based on its formed opinion. The algorithms developed aim to enhance human involvement in consensus building, fostering effective collaboration between humans and robots. Experiments with 51 participants (N = 51) show that human-robot teamwork can be improved by guiding human decisions using robotic cues. Finally, we provide detailed insights on the effects of trust, cognitive load, and participant demographics on decision-making based on user feedback and post-experiment interviews.
Abstract:Lighter-than-air vehicles or blimps, are an evolving platform in robotics with several beneficial properties such as energy efficiency, collision resistance, and ability to work in close proximity to human users. While existing blimp designs have mainly used propeller-based propulsion, we focus our attention to an alternate locomotion method, flapping wings. Specifically, this paper introduces a flapping-wing blimp inspired by manta rays, in contrast to existing research on flapping-wing vehicles that draw inspiration from insects or birds. We present the overall design and control scheme of the blimp as well as the analysis on how the wing performs. The effects of wing shape and flapping characteristics on the thrust generation are studied experimentally. We also demonstrate that the flapping-wing blimp has a significant range advantage over a propeller-based system.
Abstract:This paper describes the full end-to-end design of our primary scoring agent in an aerial autonomous robotics competition from April 2023. As open-ended robotics competitions become more popular, we wish to begin documenting successful team designs and approaches. The intended audience of this paper is not only any future or potential participant in this particular national Defend The Republic (DTR) competition, but rather anyone thinking about designing their first robot or system to be entered in a competition with clear goals. Future DTR participants can and should either build on the ideas here, or find new alternate strategies that can defeat the most successful design last time. For non-DTR participants but students interested in robotics competitions, identifying the minimum viable system needed to be competitive is still important in helping manage time and prioritizing tasks that are crucial to competition success first.