Abstract:Homogeneous diffusion inpainting can reconstruct missing image areas with high quality from a sparse subset of known pixels, provided that their location as well as their gray or color values are well optimized. This property is exploited in inpainting-based image compression, which is a promising alternative to classical transform-based codecs such as JPEG and JPEG2000. However, optimizing the inpainting data is a challenging task. Current approaches are either quite slow or do not produce high quality results. As a remedy we propose fast spatial and tonal optimization algorithms for homogeneous diffusion inpainting that efficiently utilize GPU parallelism, with a careful adaptation of some of the most successful numerical concepts. We propose a densification strategy using ideas from error-map dithering combined with a Delaunay triangulation for the spatial optimization. For the tonal optimization we design a domain decomposition solver that solves the corresponding normal equations in a matrix-free fashion and supplement it with a Voronoi-based initialization strategy. With our proposed methods we are able to generate high quality inpainting masks for homogeneous diffusion and optimized tonal values in a runtime that outperforms prior state-of-the-art by a wide margin.
Abstract:In recent years inpainting-based compression methods have been shown to be a viable alternative to classical codecs such as JPEG and JPEG2000. Unlike transform-based codecs, which store coefficients in the transform domain, inpainting-based approaches store a small subset of the original image pixels and reconstruct the image from those by using a suitable inpainting operator. A good candidate for such an inpainting operator is homogeneous diffusion inpainting, as it is simple, theoretically well-motivated, and can achieve good reconstruction quality for optimized data. However, a major challenge has been to design fast solvers for homogeneous diffusion inpainting that scale to 4K image resolution ($3840 \times 2160$ pixels) and are real-time capable. We overcome this with a careful adaptation and fusion of two of the most efficient concept from numerical analysis: multigrid and domain decomposition. Our domain decomposition algorithm efficiently utilizes GPU parallelism by solving inpainting problems on small overlapping blocks. Unlike simple block decomposition strategies such as the ones in JPEG, our approach yields block artifact-free reconstructions. Furthermore, embedding domain decomposition in a full multigrid scheme provides global interactions and allows us to achieve optimal convergence by reducing both low- and high-frequency errors at the same rate. We are able to achieve 4K color image reconstruction at more than $60$ frames per second even from very sparse data - something which has been previously unfeasible.
Abstract:With well-selected data, homogeneous diffusion inpainting can reconstruct images from sparse data with high quality. While 4K colour images of size 3840 x 2160 can already be inpainted in real time, optimising the known data for applications like image compression remains challenging: Widely used stochastic strategies can take days for a single 4K image. Recently, a first neural approach for this so-called mask optimisation problem offered high speed and good quality for small images. It trains a mask generation network with the help of a neural inpainting surrogate. However, these mask networks can only output masks for the resolution and mask density they were trained for. We solve these problems and enable mask optimisation for high-resolution images through a neuroexplicit coarse-to-fine strategy. Additionally, we improve the training and interpretability of mask networks by including a numerical inpainting solver directly into the network. This allows to generate masks for 4K images in around 0.6 seconds while exceeding the quality of stochastic methods on practically relevant densities. Compared to popular existing approaches, this is an acceleration of up to four orders of magnitude.
Abstract:Inpainting-based compression methods are qualitatively promising alternatives to transform-based codecs, but they suffer from the high computational cost of the inpainting step. This prevents them from being applicable to time-critical scenarios such as real-time inpainting of 4K images. As a remedy, we adapt state-of-the-art numerical algorithms of domain decomposition type to this problem. They decompose the image domain into multiple overlapping blocks that can be inpainted in parallel by means of modern GPUs. In contrast to classical block decompositions such as the ones in JPEG, the global inpainting problem is solved without creating block artefacts. We consider the popular homogeneous diffusion inpainting and supplement it with a multilevel version of an optimised restricted additive Schwarz (ORAS) method that solves the local problems with a conjugate gradient algorithm. This enables us to perform real-time inpainting of 4K colour images on contemporary GPUs, which is substantially more efficient than previous algorithms for diffusion-based inpainting.