Abstract:This work examines the implications of uncoupled intersections with local real-world topology and sensor setup on traffic light control approaches. Control approaches are evaluated with respect to: Traffic flow, fuel consumption and noise emission at intersections. The real-world road network of Friedrichshafen is depicted, preprocessed and the present traffic light controlled intersections are modeled with respect to state space and action space. Different strategies, containing fixed-time, gap-based and time-based control approaches as well as our deep reinforcement learning based control approach, are implemented and assessed. Our novel DRL approach allows for modeling the TLC action space, with respect to phase selection as well as selection of transition timings. It was found that real-world topologies, and thus irregularly arranged intersections have an influence on the performance of traffic light control approaches. This is even to be observed within the same intersection types (n-arm, m-phases). Moreover we could show, that these influences can be efficiently dealt with by our deep reinforcement learning based control approach.
Abstract:Transportation and traffic are currently undergoing a rapid increase in terms of both scale and complexity. At the same time, an increasing share of traffic participants are being transformed into agents driven or supported by artificial intelligence resulting in mixed-intelligence traffic. This work explores the implications of distributed decision-making in mixed-intelligence traffic. The investigations are carried out on the basis of an online-simulated highway scenario, namely the MIT \emph{DeepTraffic} simulation. In the first step traffic agents are trained by means of a deep reinforcement learning approach, being deployed inside an elitist evolutionary algorithm for hyperparameter search. The resulting architectures and training parameters are then utilized in order to either train a single autonomous traffic agent and transfer the learned weights onto a multi-agent scenario or else to conduct multi-agent learning directly. Both learning strategies are evaluated on different ratios of mixed-intelligence traffic. The strategies are assessed according to the average speed of all agents driven by artificial intelligence. Traffic patterns that provoke a reduction in traffic flow are analyzed with respect to the different strategies.