Abstract:Reinforcement learning (RL) provides a powerful method to address problems in operations research. However, its real-world application often fails due to a lack of user acceptance and trust. A possible remedy is to provide managers with the possibility of altering the RL policy by incorporating human expert knowledge. In this study, we analyze the benefits and caveats of including human knowledge via action masking. While action masking has so far been used to exclude invalid actions, its ability to integrate human expertise remains underexplored. Human knowledge is often encapsulated in heuristics, which suggest reasonable, near-optimal actions in certain situations. Enforcing such actions should hence increase trust among the human workforce to rely on the model's decisions. Yet, a strict enforcement of heuristic actions may also restrict the policy from exploring superior actions, thereby leading to overall lower performance. We analyze the effects of action masking based on three problems with different characteristics, namely, paint shop scheduling, peak load management, and inventory management. Our findings demonstrate that incorporating human knowledge through action masking can achieve substantial improvements over policies trained without action masking. In addition, we find that action masking is crucial for learning effective policies in constrained action spaces, where certain actions can only be performed a limited number of times. Finally, we highlight the potential for suboptimal outcomes when action masks are overly restrictive.
Abstract:In the paint shop problem, an unordered incoming sequence of cars assigned to different colors has to be reshuffled with the objective of minimizing the number of color changes. To reshuffle the incoming sequence, manufacturers can employ a first-in-first-out multi-lane buffer system allowing store and retrieve operations. So far, prior studies primarily focused on simple decision heuristics like greedy or simplified problem variants that do not allow full flexibility when performing store and retrieve operations. In this study, we propose a reinforcement learning approach to minimize color changes for the flexible problem variant, where store and retrieve operations can be performed in an arbitrary order. After proving that greedy retrieval is optimal, we incorporate this finding into the model using action masking. Our evaluation, based on 170 problem instances with 2-8 buffer lanes and 5-15 colors, shows that our approach reduces color changes compared to existing methods by considerable margins depending on the problem size. Furthermore, we demonstrate the robustness of our approach towards different buffer sizes and imbalanced color distributions.