Abstract:Tabular reasoning involves interpreting unstructured queries against structured tables, requiring a synthesis of textual understanding and symbolic reasoning. Existing methods rely on either of the approaches and are constrained by their respective limitations. Textual reasoning excels in semantic interpretation unlike symbolic reasoning (SQL logic), but falls short in mathematical reasoning where SQL excels. In this paper, we introduce a novel algorithm H-STAR, comprising table extraction and adaptive reasoning, integrating both symbolic and semantic (text-based) approaches. To enhance evidence extraction, H-STAR employs a multi-view approach, incorporating step-by-step row and column retrieval. It also adapts reasoning strategies based on question types, utilizing symbolic reasoning for quantitative and logical tasks, and semantic reasoning for direct lookup and complex lexical queries. Our extensive experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three tabular question-answering (QA) and fact-verification datasets, underscoring its effectiveness and efficiency.